
Book of Abstracts

7th International Conference on

Inverse Problems, Control and Shape

Optimization

PICOF 2014

May 7-9, 2014

Hammamet, Tunisia

Organizing committee
Skander Belhaj (ISAMM)
Nabil Gmati (ENIT)
Moncef Mahjoub (ENIT)
Ibrahim Trabelsi (ISAMM)

Scientific committee
Chair

Belhassen Dehman
International Program Committee

Grégoire Allaire (France)
Rajae Aboulaich (Morocco)
Amel Ben Abda (Tunisia)
Jacques Blum (France)
Houssem Haddar (France)
Mohamed Jaoua (France)
Enrique Zuazua (Spain)





Book of Abstracts of the 7th International Conference on Inverse
Problems, Control and Shape Optimization (PICOF 2014)
May 7-9, 2014, Hammamet, Tunisia

Conference homepage
http://www.lamsin.tn/picof14/

Slides at
http://www.lamsin.tn/picof14/

Online Book of Abstracts at
http://www.lamsin.tn/picof14/

http://www.lamsin.tn/picof14/
http://www.lamsin.tn/picof14/
http://www.lamsin.tn/picof14/




Table of contents

Table of contents v

I. Invited Talks 1
CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS AND NONLINEARITIES

JEAN MICHEL CORON 3
MICROSCOPIC MODELING OF CROWD MOTION

ALINE LEFEBVRE 5
ON IDENTIFICATION OF FIXED IMMERSED OBSTACLES IN A STOKES FLUID FROM

BOUNDARY MEASUREMENTS

BOURGEOIS LAURENT 7
TOPOLOGICAL SENSITIVITIES FOR CRACK PROBLEMS

GÜNTHER LEUGERING 9
DATA ASSIMILATION FOR GEOPHYSICAL PROBLEMS

DIDIER AUROUX 11
REGULARIZATION IN BANACH SPACES

KALTENBACHER BARBARA 13
INVERSE PROBLEMS FOR A SPACE FRACTIONAL ADVECTION DISPER-

SION EQUATION
TAOUS MERIEM 15

CONVEXITY AND JKO SCHEME

EDOUARD OUDET 17
GLOBULES ROUGES ET VÉSICULES: MODÉLISATION ET SIMULATIONS

OLIVIER PANTZ 19
CHARACTERIZATION OF INTERIOR EIGENVALUES FROM MULTI-FREQUENCY TIME-

HARMONIC SCATTERING DATA

ARMIN LECHLEITER 21
ELASTIC ENERGY, AREA AND PERIMETER OF PLANE DOMAINS

ANTOINE HENROT 23

II. Minisymposia 25
2.1 Inverse problems in cardiac electrophysiology 27

INVERSE PROBLEM IN ELECTROCARDIOGRAPHY VIA THE FACTORIZATION METHOD

OF BOUNDARY VALUE PROBLEMS

JULIEN BOUYSSIER, NEJIB ZEMZEMI AND JACQUES HENRY 29
A NASH-GAME APPROACH TO SOLVE THE CAUCHY PROBLEM FOR ELLIPTIC EQUA-

TIONS

MOEZ KALLEL 31
PARAMETER IDENTIFICATION IN THE CARDIAC ELECTRO-MECHANICAL PROBLEMS

CESARE CORRADO, JEAN-FREDERIC GERBEAU AND PHILIPPE MOIREAU 33
MATHEMATICAL MODELLING OF THE ELECTRICAL WAVE IN THE HEART FROM ION-

CHANNELS TO THE BODY SURFACE: DIRECT AND INVERSE PROBLEMS

NEJIB ZEMZEMI 35
2.2 Shape and Topological Optimization 37

PICOF 2014 v



METHODS AND STRATEGIES FOR IMPOSING A MAXIMUM FEATURE SIZE IN SHAPE

AND TOPOLOGY OPTIMIZATION

MICHAILIDIS GEORGIOS, ALLAIRE GREGOIRE AND FRANÇOIS JOUVE 39
GEOMETRIC INVERSE PROBLEM FOR TIME-DEPENDENT PDE SYSTEMS

HASSINE MAATOUG 41
OPTIMAL DESIGN PROBLEMS IN A DYNAMICAL CONTEXT: AN OVERVIEW

ARNAUD MÜNCH 43
NONSTANDARD TOPOLOGICAL OPTIMIZATION METHODS

MOHAMED MASMOUDI 45
2.3 Inverse problems and Carleman estimates 47

INVERSE SPECTRAL CONDUCTIVITY PROBLEM IN A PERIODIC WAVEGUIDE

ERIC SOCCORSI 49
STABILITY ESTIMATE IN DETERMINATION OF A COEFFICIENT IN TRANS-

MISSION WAVE EQUATION BY BOUNDARY OBSERVATION
RIAHI BOCHRA 51

INVERSE PROBLEMS ASSOCIATED WITH LINEAR AND NON-LINEAR PARABOLIC SYS-
TEMS: TWO DIFFERENT APPROACHES

CRISTOFOL MICHEL 53
A DATA COMPLETION ALGORITHM USING BOUNDARY INTEGRAL EQUATIONS

RABAI YOSRA AND HADDAR HOUSSEM 55
2.4 Inverse problems and Carleman estimates 57

DETERMINATION OF A TIME-DEPENDENT COEFFICIENT IN A QUAN-
TUM CYLINDRICAL WAVE GUIDE
KIAN YAVAR 59

NEW KIND OF OBSERVATIONS IN AN INVERSE PARABOLIC PROBLEM

KADDOURI ISMA 61
BOUNDARY VOLTAGE PERTURBATIONS RESULTING FROM THE PRESENCE OF THIN

INTERFACES

KHELIFI ABDESSATTAR AND HABIB ZRIBI 63
STABILITY ESTIMATE FOR AN INVERSE PROBLEM FOR THE WAVE EQUATION FROM

BOUNDARY MEASUREMENTS

BEN AICHA IBTISSEM 69
2.5 Analysis of some inverse problems from physical applications 71

SPECTRAL PROPERTIES OF THE NEUMANN POINCARE OPERATOR IN COMPOSITE

MEDIA WITH CLOSE TO TOUCHING INCLUSIONS

ERIC BONNETIER 73
AN ILL-POSED PARABOLIC EVOLUTION SYSTEM FOR DISPERSIVE DEOXYGENATION-

REAERATION IN WATERS

FAKER BEN BELGACEM 75
AN INVERSE PROBLEM OF MAGNETIZATION IN GEOSCIENCE

SYLVAIN CHEVILLARD 77
PARAMETER ESTIMATION USING MACROSCOPIC MODELS OF THE DIFFUSION MRI

SIGNAL

JING-REBACCA LI 79
2.6 Application of inverse methods in aerospace industry 81

CAVITIES IDENTIFICATION PROBLEMS WITH MISSING DATA

AMEL BEN ABDA, EMNA JAÏEM, SINDA KHALFALLAH AND ABDELMALEK

ZINE 83
HYBRID INVERSE BOUNDARY ELEMENT METHOD FOR THE DETERMINATION OF

THE OPTIMAL SPECTRAL CHARACTERISTICS OF A COMPLEX RADIATING

NOISE SOURCE

HAMDI MOHAMED ALI AND FRIKHA SLAHEDDINE 85

vi



IDENTIFICATION OF OVERPRESSURE SOURCES AT LAUNCHER VEHI-
CLE LIFT-OFF USING AN INVERSE METHOD IN THE TIME DO-
MAIN
TROCLET BERNARD, I. TERASSE AND S. ALESTRA 89

2.7 Inverse problems: Identification and stability 95
POINTWISE INEQUALITIES OF LOGARITHMIC TYPE IN HARDY-HÖLDER

CHAABANE SLIM AND FEKI IMED 97
QUELQUES ESTIMATIONS LOGARITHMIQUES OPTIMALES DANS LES ESPACES DE

HARDY-SOBOLEV

FEKI IMED, NFATA HOUDA AND WIELONSKY FRANCK 99
PLASMA EQUILIBRIUM RECONSTRUCTION IN A TOKAMAK USING TOPOLOGICAL

GRADIENT METHOD

HASSINE MAATOUG, JAOUA MOHAMED AND SABIT SOUHILA 101
RECONSTRUCTION OF MULTIPLE CRACKS USING A SELF REGULARIZING APPROACH

CHAABANE SLIM, JAOUA MOHAMED AND JAOUR ANSAR ALLAH 105
2.8 Control and Stabilization Problems 109

ENERGIE LIMITE ET DÉCROISSANCE DE L’ENERGIE DANS RÉSEAU DÉGÉNÉRÉ

MOHAMED JELLOULI 111
STABILITY ESTIMATES FOR THE CALDERÓN PROBLEM WITH PARTIAL DATA

DAVID DOS SANTOS FERREIRA 115
WELL-POSEDNESS AND ASYMPTOTIC STABILITY FOR THE LAMÉ SYSTEM WITH IN-

FINITE MEMORIES IN BOUNDED DOMAIN

AHMED BCHATNIA AND AISSA GUESMIA 117
NONLINEAR CONTROL FOR THE RADIATIVE-CONDUCTIVE HEAT TRANS-

FERT SYSTEMS
MOHAMED GHATTASSI, MOHAMED BOUTAYEB AND JEAN RODOLPHE ROCHE119

2.9 Control of diffusion equations: Numerical methods 121
VARIATIONAL FORMULATIONS FOR THE NUMERICAL RESOLUTION OF CONTROL

AND INVERSE PROBLEMS FOR THE HEAT EQUATION

ARNAUD MUNCH 123
OPTIMAL OBSERVATION OF PARABOLIC EQUATIONS

YANNICK PRIVAT 125
PARAREAL IN TIME INTERMEDIATE TARGETS METHODS FOR OPTIMAL CONTROL

PROBLEM

MOHAMED KAMEL RIAHI 127
ILL-CONDITIONING VERSUS ILL-POSEDNESS FOR THE BOUNDARY CONTROLLA-

BILITY OF THE HEAT EQUATION

SIDI-MAHMOUD KABER 129

III. Contributed talks 131
3.1 Boundary and cracks recovery 131

IDENTIFICATION OF FRACTURES IN POROUS MEDIUM

FATMA CHEIKH, HEND BEN AMEUR, GUY CHAVENT, VINCENT MARTIN

AND JEAN ROBERTS 133
SUBMARINE GROUNDWATER DISCHARGE AS AN INVERSE PROBLEM

NEJLA TLATLI HARIGA, THOURAYA NOURI BARANGER AND RACHIDA BOUHLILA135
IDENTIFICATION DE FISSURES INTERFACIALES EN ÉLASTICITÉ TRIDIMENSIONNELLE

PAR UNE MÉTHODE D’OPTIMISATION

MOHAMED LARBI KADRI AND JALEL BEN ABDALLAH 139
A FREE BOUNDARY PROLEM FOR THE STOKES OPERATOR

SAYEH MOHAMED, BOUCHON FRANÇOIS AND TOUZANI RACHID 145
3.2 Data completion 147

TWO STEP OBSERVER APPROACH TO SOLVE CAUCHY PROBLEM FOR LAPLACE EQUA-
TION

MUHAMMAD USMAN MAJEED AND TAOUS MERIEM LALEG-KIRATI 149

vii



RECOVERING BOUNDARY DATA FROM INCOMPLETE CAUCHY DATA: THE CAUCHY-
STOKES SYSTEM

ELYES AHMED AND AMEL BEN ABDA 151
AN INVERSE BOUNDARY PROBLEM FOR THE HEAT EQUATION IN THE PRESENCE OF

SMALL INHOMOGENEITIES

MANEL BOURAOUI 153
MANAGING DISASTERS CONSEQUENCES ON THE FITNESS OF ENVIRONMENTAL

RESOURCES FOR POPULATION SURVIVAL

FETHI BIN MUHAMMAD BELGACEM 155
3.3 Inverse problems for electromagnetics 157

A NEW APPROACH TO SOLVE THE INVERSE SCATTERING PROBLEM FOR THE WAVE

EQUATION

MAYA DE BUHAN AND MARIE KRAY 159
FORMULATION OF THE EMISSION SOURCES LOCALIZATION PROBLEM IN THE CASE

OF A SELFTRIGGERED RADIO-DETECTION EXPERIMENT: BETWEEN ILL-
POSEDNESS AND REGULARIZATION

AHMED REBAI AND TAREK SALHI 161
3D DIRECT AND INVERSE SOLVER FOR EDDY CURRENT TESTS OF SG TUBES

RIAHI MOHAMED KAMEL, HADDAR HOUSSEM, JIANG ZIXIAN AND FILIOT

PIERRE-LOUIS 163
INSIDE-OUTSIDE-DUALITY AND INTERIOR EIGENVALUES OF IMPENETRABLE SCAT-

TERERS

PETERS STEFAN 165
3.4 Mathematics for structure mechanics 167

ESTIMATION DE PARAMÈTRES DANS UNE EDP ELLIPTIQUE 1D
CHORFI LAHCÈNE 169

IMPROVING THE MECHANICAL PERFORMANCES OF A MULTILAYERED PLATE WITH

THE ORIENTATIONS OF ITS LAYERS OF FIBERS

MEKKI M., GDHAMI A., HABBAL A., MOKNI M. AND YAHYAOUI B. 171
STABILIZED FINITE ELEMENTS FOR CURVED FIBRED PLATES

MANNAI AYMEN AND SALOUA AOUADI 175
3.5 Optimization and data assimilation 179

ASSIMILATION D’UN DÉPLACEMENT DE DUNES DE TYPE BERKHANE

WALID MOUROU AND LAMIA JAAFAR BELAID 181
VARIATIONAL DATA ASSIMILATION WITH YAO PLATFORM FOR THE

CALIBRATION OF A HYDROLOGICAL MODEL
ABBARIS A., DAKHLAOUI H., THIRIA S. AND BARGAOUI Z. 183

PROPER ORTHOGONAL DECOMPOSITION IN CARDIAC ELECTROPHYSIOLOGY

JAMILA LASSOUED, MONCEF MAHJOUB AND NEJIB ZEMZEMI 187
CONTINUATION METHODS AND NESTEROV OPTIMISATION TECHNIQUES FOR GEN-

ERAL STRUCTURED SPARSE LEARNING

HADJ SELEM FOUAD, FROUIN VINCENT, GUILLEMOT VINCENT, LOFSTEDT

TOMMY AND DUCHESNAY EDOUARD 191
3.6 Stochastic optimization and non linear problems 193

ETUDE DE LA PERFORMANCE DE L’HYBRIDATION D’UNE MÉTHODE D’OPTIMISATION

AVEC UNE FORMULE DE REPRÉSENTATION DE L’OPTIMUM GLOBAL

MAJED CHEMKHI, MOHAMED JEBALIA, AZMI MAKHLOUF AND MAHER

MOAKHER 195
RUNGE KUTTA APPROACH FOR OPTION PRICING WITH CONSTANT ELAS-

TICITY OF VARIANCE (CEV) MODEL
ABDELILAH JRAIFI AND RAJAE ABOULAICH 197

A FAMILY OF ESTIMATORS FOR THE SOLUTION OF A NON-LINEAR INVERSE PROB-
LEM

FEDERICO BENVENUTO AND HOUSSEM HADDAR 199
3.7 High Shape and topological derivatives 201

viii



THE TOPOLOGICAL DERIVATIVE FOR ANISOTROPIC ELASTICITY OF A STRESS-DISPLACEMENT

CRITERION

GABRIEL DELGADO AND MARC BONNET 203
A 3D SEGMENTATION IN X RAY TOMOGRAPHY

RJAIBI BADREDDINE, JAAFAR BELAID LAMIA AND MOUROU WALID 205
ERROR ESTIMATION IN SHAPE OPTIMIZATION

BERNHARD KINIGER 207
DÉRIVATION PAR RAPPORT À LA FORME DU SYSTÈME DE NAVIER-STOKES NON

STATIONNAIRE AVEC DES CONDITIONS AUX BORDS DE TYPE NAVIER

BSAIES CHAIMA AND DZIRI RAJA 209

Author index 211

ix





Invited Talks

PICOF 2014 1





Control of partial di�erential equations and nonlinearities

Jean-Michel Coron
∗

Abstract: In this talk we survey some methods which can used in order to study control
issues for physical systems modeled by means of nonlinear partial di�erential equations. A spe-
cial emphasis is put on cases where the nonlinearities play a crucial role. These tools include
Lie brackets, return method, scaling, quasistatic deformations, power series expansion, phantom
tracking, Fredholm transformations. We present applications to various physical control systems
(Euler and Navier-Stokes equations of incompressible �uids, shallow water equations, Korteweg-de
Vries equations...) and open problems on the control of these control systems.

Keyworlds: Control, nonlinear partial di�erential equations, Fredholm transformations.

∗Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie, France, coron@ann.jussieu.fr,
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Microscopic modeling of crowd motion

Aline Lefebvre-Lepot∗

Abstract

We are interested in modeling crowd motion. Such models can be divided into two classes: the
�rst one involves a macroscopic description of the crowd (which is represented by a local density)
and the second one uses a microscopic description (each individual is represented). In this talk,
we focus on microscopic modeling of crowds.

After a brief review of the existing microscopic models, we will focus on the model proposed
by B. Maury and J. Venel (2007). In this model, each person is modeled by a disk and has a
desired velocity (for example, the quickest path to leave a room). Since people can not overlap,
the actual velocities has to take congestion into account. To do so, the authors propose to de�ne
the actual velocities as the projection of the desired ones onto the set of admissible velocities
(that is, the velocities that preserve the non-overlapping constraint). To compute solutions to this
model, the authors propose a numerical algorithm based on a projection step, initially described
by B. Maury in order to simulate inelastic collisions in granular �ows. Numerical simulations of
crowd emergency exit using this model will be shown.

The previous model is based on a projection of the global vector of desired velocities V =
(V1, · · · , VN ) on the set of admissible velocities (N being the number of persons). As a consequence,
in this model, the crowd can be seen as a unique entity which optimizes its satisfaction. This leads
for example to pressure arches which blocks the exits. These situations are well known for granular
materials and are realistic in case of emergency evacuation for crowd motion. We will discuss of
di�erent approach allowing to add "social" contributions to the behavior of people in order to
simulate more general situations.

This work is a joint work with B. Maury, J. Venel, S. Faure and J-B. Lagaert.

∗CNRS - CMAP/Ecole Polytechnique
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On identi�cation of �xed immersed obstacles in a Stokes

�uid from boundary measurements

Laurent Bourgeois∗

Abstract: In this talk we present an "exterior approach" in order to retrieve some �xed ob-
stacles immersed in a Stokes �uid from boundary measurements. Such iterative approach is a
combination of a quasi-reversibility method and of a level set method : the �rst one enables us
to update the solution of the ill-posed Cauchy problem outside the obstacle obtained at previous
iteration, while the second one enables us to update the obstacle with the help of the solution
obtained at previous iteration. The main feature of our approach is that it does not rely on an
optimization process. Concerning the quasi-reversibility method, which dates back to LattÃ�s and
Lions (67), we introduce two new mixed formulations which transform the classical fourth-order
problem of quasi-reversibility into a system of two second-order problems. We compare these two
mixed formulations and illustrate them numerically on a 2D data completion problem. Concerning
the level set method, we introduce a new method based on a simple Poisson equation that is well
adapted to Dirichlet obstacles. Our exterior approach is �nally applied to some 2D numerical
examples of inverse obstacle problems.

Keyworlds: Identi�cation, immersed obstacles, Stokes �uid.

∗UMA Equipe POEMS, France, laurent.bourgeois@ensta-paristech.fr,
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Topological sensitivities for crack problems

Günther Leugering∗

Abstract: Control of crack propagation by the way of optimal placement material inclusions

in composite materials is a �eld of current interest. We show that the energy release in brittle

materials admits a conical derivative with respect to to topological changes. The prove is based

on a nonoverlapping domain decomposition technique using the Dirichlet-to-Neumann mapping.

Keyworlds:

∗Friedrich-Alexander-Universität Erlangen-Nürnberg, leugering@math.fau.de,
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Data assimilation for geophysi
al problemsDidier Auroux∗Abstra
t: We present a new data assimilation s
heme, based on observers, and we 
ompareit with variational and sequential methods, on a realisti
 o
ean model.Keywords: data assimilation, geophysi
s, optimal 
ontrol, nudging, observers.Data assimilation 
onsists in estimating the state of a system by 
ombining via numeri
almethods two di�erent sour
es of information: models, and observations. Data assimilation makesit possible to answer a wide range of questions su
h as: the optimal identi�
ation of the initial stateof a system, and then reliable numeri
al fore
asts; the systemati
 identi�
ation of error sour
esin the models; the optimization of observation networks; the extrapolation, using a numeri
almodel, of the values of non observed variables. Thus, data assimilation is in
reasingly used inthe 
ommunity of geophysi
al s
ien
es, in relation with mathemati
ians. In external geophysi
s(meteorology, o
eanography, . . . ), the model is 
haoti
 and hen
e very dependent on the initial
ondition. The inverse problem 
onsists then in identifying the initial 
ondition for the dataassimilation period. There are two main 
lasses of data assimilation methods, the �rst basedon estimation theory (sequential assimilation), and the other based on optimal 
ontrol theory(variational assimilation).The most sophisti
ated variational method, 
urrently used in many 
enters of operationalfore
ast (in o
eanography and in meteorology), is the 4D-VAR (four-dimensional variational)algorithm [5℄. It 
onsists of assimilating all the available information (
ontained both in the modeland the observations) during the work (or assimilation) period. The problem of identifying thestate of a system at a given time 
an then be written as the minimization of a 
riterion measuringthe di�eren
e between the fore
asts of the model and the observations of the system in the giventime window. In general, the initial state of the time interval is taken as the 
ontrol variablefor the minimization pro
ess. This provides an advantage to the 4D-VAR algorithm is that forea
h time step, the estimation of the state ve
tor depends not only on the previous observations,but also on the future observations. Propagative phenomena, su
h as waves, are generally wellrepresented by the 4D-VAR method. The disadvantages of the 4D-VAR algorithm are on one handits quite di�
ult implementation, be
ause it requires both the adjoint of the physi
al model anda powerful minimization algorithm, and on the other hand the la
k of estimation of the errors inthe assimilated state. Contrarily to the 4D-VAR, the sequential methods only require the physi
almodel in the dire
t mode.The spearhead of sequential methods, whi
h are also operational (but more marginally than4D-VAR), is the Kalman �lter. The Kalman �lter is designed to provide, for ea
h time step, theoptimal estimate (of varian
e of minimal error) of the system state, by using only the estimates ofthe state and the last observations. It alternates propagation steps (with the physi
al model) and
orre
tion steps (using the observations) of the state and of its error statisti
s. The main advantageof the Kalman �lter is that it provides in real time an estimation of the statisti
s of errors of thestate, in addition to the state itself, and thus it is able to provide a statisti
ally optimal estimateof the state. Its weakness is its inability to take into a

ount future observations like the 4D-VARalgorithm does. Extended forms of the Kalman �lter are designed to integrate future observationsthen to smooth the model traje
tory [4℄; they are 
alled the Kalman smoothers. 4D-VAR andKalman �lter or smoothers 
an be shown to be theoreti
ally equivalent under 
ertain hypotheses.However, the assumptions ne
essary to implement them are usually di�erent and the equivalen
eis always lost in pra
ti
e.
∗University of Ni
e Sophia Antipolis, Fran
e, auroux�uni
e.fr
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Nudging 
an be seen as a degenerate, oversimpli�ed form of the Kalman �lter. It 
onsistsin applying a Newtonian re
all of the state value towards its dire
t observation. In spite of thedi�eren
es, the term nudging is also sometimes used in the 
ontext of statisti
al interpolation. Thestandard nudging algorithm, whi
h initially appeared in meteorology, is the �rst data assimilationmethod used in an operational way in o
eanography. Some re
ent studies have shown that it ispossible to determine in a systemati
 way the optimal weighting 
oe�
ients of the re
all for
e tothe observations, and then nudging is equivalent to the Kalman �lter, or to 4D-VAR.One of the main disadvantages of the sequential data assimilation methods is that they 
annot,at a given time, take into a

ount the future observations. They do not improve the estimationof the initial 
ondition of the system. A simple idea, allowing at the same time the improvementof the estimation of the initial 
ondition and the assimilation of future observations, 
onsists ofapplying a se
ond time the sequential method, but on the ba
kward (in time) model, using theestimation of the �nal state (obtained by the forward assimilation) as a new initial guess. Thus, atthe end of this pro
ess, one obtains a new estimation of the system state at the initial time (whi
hmakes it possible to use this estimation in a variational data assimilation method), and at ea
htime of the ba
kward assimilation, the 
orre
tions a
tually use the previous observations in theba
kward model, therefore future observations, to improve the estimated states. The ba
kwardproblems are generally very ill posed (the heat equation is a very good example), and it is not apriori easy to apply a traditional data assimilation method to a ba
kward model. However, if oneuses a degraded version of the Kalman �lter for 
omplete observations of the system (in time andspa
e), it is possible to stabilize ba
kward integrations thanks to the assimilation 
orre
tive term.A more re
ent approa
h of ba
kward and forward nudging (or ba
k and forth nudging, BFN)has been developed, 
onsisting in initially solving the forward equations with a nudging term, andthen, using the �nal state as an initial 
ondition, in solving the same equations in a ba
kwarddire
tion with a feedba
k term (with the opposite sign 
ompared to the feedba
k term of forwardnudging). This pro
ess is then repeated iteratively until 
onvergen
e. The implementation of theBFN algorithm has been shown to be very easy, 
ompared to other data assimilation methods [1℄.However, several theoreti
al and numeri
al studies showed that it was di�
ult to deal withdi�usion pro
esses during ba
kward integrations, leading to instabilities or explosion of the numer-i
al solutions [2℄. We present here an improved Ba
k and Forth Nudging algorithm for di�usiveequations in the 
ontext of meteorology and o
eanography. In these appli
ations, the theoreti
alequations are usually di�usive free (e.g. Euler's equation for meteorologi
al pro
esses). But then,in a numeri
al framework, a di�usive term is often added to the equations (or a di�usive s
hemeis used), in order to both stabilize the numeri
al integration of the equations, and take into 
on-sideration some subs
ale phenomena. In su
h situations, it is physi
ally 
oherent to 
hange thesign of the di�usion term in the ba
kward integrations, in order to keep un
hanged both roles ofthe di�usion term [3℄.Referen
es[1℄ D. Auroux and J. Blum, A nudging-based data assimilation method for o
eanographi
 problems:the Ba
k and Forth Nudging (BFN) algorithm, Nonlin. Pro
. Geophys., 15:305-319, 2008.[2℄ D. Auroux and M. Nodet, The ba
k and forth nudging algorithm for data assimilation problems:theoreti
al results on transport equations, ESAIM Control Optim. Cal
. Var., 18(2):318-342,2012.[3℄ D. Auroux, J. Blum, and M. Nodet, Di�usive Ba
k and Forth Nudging algorithm for dataassimilation, C. R. A
ad. S
i. Paris, Ser. I, 349(15-16):849-854, 2011.[4℄ G. Evensen and P.J. van Leeuwen, An Ensemble Kalman Smoother for Nonlinear Dynami
s,Mon. Wea. Rev., 128:1852-1867, 1999.[5℄ F.-X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation ofmeteorologi
al observations: theoreti
al aspe
ts, Tellus, 38A:97-110, 1986.
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Regularization in Banach Spaces

Barbara Kaltenbacher
∗

Abstract: Making use of special features of certain Banach space norms such as the L1 norm
for promoting sparsity or the L∞ norm for modelling uniform noise, enables an enhanced treat-
ment of many practical inverse problems and has thus become quite popular recently. Motivated
by this fact, much of the methodology and convergence theory for regularization has been gener-
alized from the classical Hilbert space setting to Banach spaces in the last �ve to ten years. This
talk is supposed to provide a short (probably incomplete) overview of the existing results and a
report on recent joint work with Uno Hamarik, Bernd Hofmann, Urve Kangro, Christiane Poschl,
Elena Resmerita, Otmar Scherzer, Frank Schopfer, Thomas Schuster, and Ivan Tomba.

Keyworlds: Banach spaces, Regularization, inverse problem.

∗University of Graz, Institute for Mathematics and Scienti�c Computing, Austria,

Barbara.Kaltenbacher@uni-klu.ac.at,
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INVERSE PROBLEMS FOR A SPACE FRACTIONAL ADVECTION
DISPERSION EQUATION

 Taous-Meriem Laleg-Kirati

CEMSE, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi
Arabia, taousmeriem.laleg@kaust.edu.sa

Abstract

Fractional advection dispersion equation is usually used to model solute transport in heterogeneous
porous media. Identifying the source and the parameters for such an equation is important to understand
how chemical or biological contaminates are transported throughout surface aquifer system. For
instance, an estimate of the differentiation order in a ground water contaminant transport model can
provide information about soil properties, such as the heterogeneous of the media.

We are interested in some inverse problems for a space fractional advection dispersion equation. We
will discuss both the inverse source problem and the simultaneous estimation of the coefficients and the
fractional differentiation order.

For the inverse source problem, we will derive the solution of the direct problem and study the well-
posedness of the problem. We will then propose a numerical algorithm to compute the unknown source
from final time solution.

In the second part, we will be interested in identifying the average velocity, the dispersion coefficient
and the differentiation order for a space fractional advection dispersion equation using the
measurements of the concentration and the flux at final time.  Estimating the coefficients for fractional
differential equations is not a trivial problem. Moreover, the problem becomes more challenging when
it involves the identification of the differentiation order, where usually using standard optimization
approaches fails. We propose a novel approach for more efficient and accurate results, where the so-
called modulating functions method is combined with an optimization problem to estimate all three
parameters simultaneously.  The efficiency of the proposed method will be illustrated through some
numerical examples.

1
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Convexity constraints and Jordan - Kinderlehrer - Otto

gradient �ow

Édouard Oudet∗

Abstract

We discuss new convergent schemes well suited for the numerical resolution of problems of calculus

of variations under convexity constraints. We illustrate the versatility and the e�ciency of our

approach on three types of problems : 3D denoising, the principal agent problem, and optimization

within the class of convex bodies. Then, we discuss recent progresses on the simulation of Jordan-

Kinderlehrer-Otto �ow to approximate elliptic, non necessary local, partial di�erential equations.

∗LJK, Université Joseph Fourier Grenoble
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Globules rouges et vésicules: modélisation et simulations

Olivier Pantz
∗

Abstract: Le modèle de Helfrich décrivant le comportement des vésicules (des membranes
bilidiques) peut Ãatre obtenu comme limite asymptotique d'un modèle tridimensionnel. On se
propose d'utiliser cette approximation a�n d'introduire de nouvelles méthodes numériques de type
lignes de niveau pour minimiser l'énergie de Helfrich.

Keyworlds: Modèle de Helfrich, lignes de niveau, minimisation d'energie.

∗CMAP, Ecole Polytechnique, France, olivier.pantz@polytechnique.org,
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Characterization of interior eigenvalues from

multi-frequency time-harmonic scattering data

Armin Lechleiter
∗

Abstract: It is well-known that the interior eigenvalues of the Laplacian in a bounded domain
share connections to scattering problems posed in the exterior of this domain. For instance, certain
boundary integral equations for exterior scattering problems fail at interior resonances.

Similar connections also exist for inverse scattering problems: For instance, if zero is an eigen-
value of the far �eld operator at a �xed wave number, then the squared wave number is an interior
eigenvalue. Despite it is in general wrong that interior eigenvalues correspond to zero being an
eigenvalue of the far �eld operator, one can prove a pretty direct characterization of interior eigen-
values via the behaviour of the phases of the eigenvalues of the far �eld operator for positive wave
numbers.

In this talk, we present such analytic characterizations for impenetrable and penetrable scatter-
ers in the context of the scalar Helmholtz equation. In the case of a penetrable scattering object,
the interior eigenvalues are so-called interior transmission eigenvalues. These analytic results can
be extended to more complex scattering problems (e.g., anisotropic scatterers or electromagnetic
scattering), and they can further be exploited numerically.

Our motivation to study this so-called inside-outside duality is on the one hand due to the
recent interest in interior transmission eigenvalues and on the other due to an older paper by
Eckmann and Pillet (1995).

The results given in the talk are joint work with Andreas Kirsch (KIT, Karlsruhe, Germany)
and Stefan Peters (University of Bremen, Germany).

Keyworlds: Interior eigenvalues, scattering data, boundary integral equations.

∗ZeTeM, Zentrum fur Technomathematik, Universitat Bremen, Germany, lechleiter@math.uni-bremen.de,
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Elastic energy, area and perimeter of plane domains

Antoine Henrot∗

Abstract: In this talk, we will investigate the links between the elastic energy (in the
sense of Euler), the area and the perimeter of a convex domain in the plane. The aim being
to plot the Blaschke-Santalò diagram involving these three quantities.
Keyworlds: elastic energy, area, perimeter, Blaschke-Santalò diagram

1 Content of the talk

This is a joint work with Chiara Bianchini from Florence and Takéo Takahashi from Nancy.

For a regular planar convex compact set Ω (a planar convex body) let us introduce the
three geometric quantities: its area A(Ω), its perimeter P (Ω) and its elastic energy E(Ω) =
1

2

∫

∂Ω
k2 ds where k is the curvature (and s the arc length). The elastic energy of a curve seems

to have been introduced by L. Euler who studied the elasticae which are the curves, satisfying
some boundary conditions, critical points of the elastic energy. This question has been widely
studied and has many applications in geometry, kinematics (the ball-plate problem), numerical
analysis (non linear splines), computer vision (reconstruction of occluded edges)... For a good
overview and historical presentation, we refer e.g. to [3].

The aim of this talk is to study the links between E(Ω), A(Ω) and P (Ω). It can be done in
investigating the set of points in R3 corresponding to the triple (A(Ω), E(Ω), P (Ω)) (or some
a-dimensional version in the plane corresponding to (A(Ω)/P (Ω)2, E(Ω)P (Ω))):

E :=

{
(x, y) ∈ R2, x =

4πA(Ω)

P (Ω)2
, y =

E(Ω)P (Ω)

2π2
, Ω convex

}
. (1)

This kind of diagram is often called a Blaschke-Santaló diagram since W. Blaschke in [2]
introduced this kind of diagram where the three quantities in consideration were the volume,
the surface area and the integral of the mean curvature for a three-dimensional convex body.
Later on, L. Santaló in [4] proposed a systematic study of this kind of sets for planar convex
body and geometric quantities like the area, the perimeter, the diameter, the minimum width,
the inradius and the circumradius.

For that purpose, we will consider the minimization problem

min
Ω∈A

E(Ω) + µA(Ω), (2)

where µ ≥ 0 and where A is the class of regular planar convex bodies Ω such that

P (Ω) = P0. (3)
∗IECL - Universit’e de Lorraine, antoine.henrot@univ-lorraine.fr,
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Obviously the disk would like to minimize the first term, due to Cauchy-Schwarz inequality
while it would like to maximize the second one by the isoperimetric inequality. Thus we can
expect that the penalization parameter µ plays an important role and that the solution is
close to the disk when µ is small and far (actually close to the segment) when µ is large. By
solving this minimization problem, our objective is to describe precisely the lower boundary
of the set E defined in (1).

We prove

Theorem 1.1 For all µ ≥ 0, there exists Ω∗ ∈ A which minimizes Jµ(Ω) = E(Ω) + µA(Ω).
The domain Ω∗ is (at least) C2. More precisely, it is C∞ on the strictly convex parts and the
curvature is continuous at junctions with flat parts of the boundary. Moreover, there exists
one solution which is centrally symmetric.

We also discuss when the disk is or is not the solution of that problem. More precisely:

• we prove that the disk is the solution when µ ≤ 1,

• we prove that the disk cannot be the solution for µ > 3

Numerically, we observe that it is the solution when µ ≤ 3.
We also discuss the presence of segments on the boundary of the optimal domain. We are able
to prove that such segments exist for µ large enough (µ ≥ 9.22.

Finally we give some properties of the set E defined in (1). In particular we prove that
this set in convex in the horizontal and the vertical direction.
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2.1 Inverse problems in cardiac electrophysiology (IPCE)

Minisymposium organized by Nejib Zemzemi





Inverse Problem in Electrocardiography via
the Factorization Method of Boundary Value

Problems

Julien Bouyssier, Nejib Zemzemi, Jacques Henry,

CARMEN team, Inria Bordeaux Sud-Ouest

200 avenue de la vieille tour, 33405 Talence Cedex

Electrocardiographic Imaging (ECGI) is a new imaging technique that
noninvasively images cardiac electrical activity on the heart surface. In
ECGI, a multi-electrode vest records body-surface potential maps (BSPMs);
then, using geometrical information from CT-scans and a mathematical algo-
rithm, electrical potentials, electrograms and isochrones are reconstructed on
the heart surface. The reconstruction of cardiac activity from BSPMs is an
ill-posed inverse problem. In this work, we present an approach based on an
invariant embedding method: the factorization method of boundary values
problems [1, 2]. The idea is to embed the initial problem into a family of sim-
ilar problems on subdomains bounded by a moving boundary from the torso
skin to the epicardium surface. For the direct problem this method provides

Inverse Problem in Electrocardiography via Factorization
Method of Boundary Value Problems :

How reconstruct epicardial potential maps from measurements of the torso ?

Julien Bouyssier, Nejib Zemzemi, Jacques Henry
julien.bouyssier@inria.fr, nejib.zemzemi@inria.fr, jacques.henry@inria.fr

Motivation and goal

Motivation : Solve the inverse problem in electrocardiography from

measurements of the torso.

Goal : Use factorization method to compute epicardial potential maps.

This work is a simplified presentation of the method by considering a
cylinder as geometry of our problem.

Initial problem : electrical potential u in the domain Ω is governed by

(P0)





∆u = 0 in Ω , Ω : cylinder
u = 0 on Σ , Σ : lateral surface
u = T on ΓT , T : potential on the torso surface ΓT

∇u · n = Φ on ΓT , Φ : normal derivative of the potential

With T and Φ known, find potential t and his normal derivative φ on
the heart surface ΓH to complete this ill-posed Cauchy problem.

Optimal control problem

(P0) is decomposed into two sub-problems, ∀(η, τ ) :

(1)





∆u1 = 0 in Ω
u1 = 0 on Σ
u1 = T on ΓT

∇u1 · n = η on ΓH

and (2)





∆u2 = 0 in Ω
u2 = 0 on Σ
u2 = τ on ΓH

∇u2 · n = Φ on ΓT

Solve (P0) :

=⇒ Define the cost function E(η, τ ) =
∫

Ω(∇u1(η) − ∇u2(τ ))2

=⇒ Find (φ, t) : minimize E(η, τ )

New approach : the factorization method by invariant embedding

Principle of invariant embbeding

Principle : transport potential data from torso surface to heart surface

=⇒ Boundary value problems (1) and (2) are embedded into a family of similar problems on subdomains ΩS

=⇒ ΩS are bounded by a moving boundary ΓS defined at x = s for x = 0 −→ x = a

=⇒ At each position x = s, we impose a Neumann boundary condition ∂uS
1

∂x |ΓS
= α for (1) and a Dirichlet

boundary condition (uS
2 )|ΓS

= β for (2) :

(P1
S)





∆u1
S = 0 in ΩS

u1
S = 0 on ΣS

u1
S = T on ΓT

∇u1
S · n = α on ΓS

and (P2
S)





∆u2
S = 0 in ΩS

u2
S = 0 on ΣS

u2
S = β on ΓS

∇u2
S · n = Φ on ΓT

ΓT

x=s x=ax=0

Evolution for the
moving boundaryΩS

ΓS

volume

Growing

ΓH
ΣS

Ω

Σ
boundary
Moving

Figure 1: Illustration of the moving boundary. The domain Ω is a cylinder of a lenght a with a section
O and a lateral surface Σ. The section O = ΓT at x = 0 represents the torso surface and the section
O = ΓH at x = a represents the heart surface. The moving boundary O = ΓS at x = s is defined between
these two surfaces and moving along the axis of revolution for x ∈ [0; a]. For each position s, a cylinder
with a section O, a lateral surface ΣS and a length s is defined and forms a new subdomain ΩS.

Resolution method

At each position x = s of ΓS, we define two linear operators :

Neumann-to-Dirichlet application Q(s) : α '−→ u1
S|ΓS

, associated to (P1
S)

Dirichlet-to-Neumann application P (s) : β '−→ ∂u2
S

∂x |ΓS
, associated to (P2

S)

=⇒ P and Q depend on s : variable that describes the axis of evolution

=⇒ P and Q act on functions defined on section O

Let w1 and w2 : residual functions, defined on O. ∀x ∈ [0; a], we have :

(3)

{
u1

S(x) = Q(x)α + w1(x)

with Q(0) = 0 and w1(0) = T
and (4)

{
∂u2

S

∂x (x) = P (x)β + w2(x)

with P (0) = 0 and w2(0) = −Φ

Let ∆y : laplacian operator, defined on the section O. ∀x ∈ [0; a], we have :

(5)





dP
dx + P 2 = −∆y, P (0) = 0

dw2

dx + Pw2 = 0, w2(0) = −Φ
and (6)





dQ
dx − Q∆yQ = I, Q(0) = 0

dw1

dx − Q∆yw1 = 0, w1(0) = T

=⇒ First solve Riccati equations for P and Q for x = 0 −→ x = a

=⇒ Then solve equations for w1 and w2 for x = 0 −→ x = a

=⇒ Compute operators and residuals at x = a.

Rename P (a) = P , Q(a) = Q, w1(a) = w1, w2(a) = w2

Define the matrix A as : A =

(
Q −QP

−PQ P

)

We can rewrite E(η, τ ) as : E(η, τ ) = C + [η, τ ]A[η, τ ]
′ − 2

∫
ΓH

(w1Pτ + Qw2η)

Finally :

(φ, t) = arg min E(η, τ ) ⇐⇒ A[φ, t]
′
= [Qw2, Pw1]

′

=⇒ Find (φ, t) : regularize previous system and inverse A

Conclusions and perspectives

Conclusions :

Direct optimal estimation of t and φ before using any discretisation :

=⇒ Analyse ill-posedness and propose a better regularization and discretization

Equations for P and Q depend only of the geometry :

=⇒ Not necessary to repeat resolution at every time step of cardiac cycle

Perspectives :

Apply the method to 3D case where the moving boundary ΓS will be a deformed surface :

=⇒ First : model of spheres

=⇒ Then : realistic geometries : how compute 3D surfaces ? + numerical cost ?

Figure 2: Illustration of ΓS for the case of spheres, during the depolarization phase (left)
and the repolarization phase (right). The smaller sphere represents the heart surface and the
bigger one the torso surface. The heart was stimulated and direct problem was solved. We
use computed potential data on the torso surface to apply factorization method and recover
potential at heart surface. Spheres between torso and heart represent succesive positions of ΓS

during invariant embbeding. We also represent the potential recovered by the method.
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Figure 1: Illustration of the moving boundary. ΓT the torso surface, ΓH the
heart surface, and ΓS the moving surface.
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an equivalent formulation with two Cauchy problems evolving on this mov-
ing boundary and which have to be solved successively in opposite directions.
This method calculates Neumman-Dirichlet and Dirichlet-Neumann opera-
tors on the moving boundary using Riccati equations. Mathematical analysis
allows to write an optimal estimation of the epicardial potential based on a
quadratic criterion. The analysis of the inverse problem ill-posedness allows
to compare different regularisation terms. For numerical simulations we first
construct a synthetical data based on the ECG solver [3]. The electrical po-
tential on the torso boundary is then extracted from the forward solution to
be used as an input of the inverse problem. The method was first presented
in [2] for a cylindrical domain. Here the numerical approximation of the
method is thoroughly studied and the method is extended to 3D domains of
arbitrary shapes. Numerical simulations in the case of spheres are presented.
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A Nash-game approach to solve the Cauchy problem for

elliptic equations

Moez Kallel
∗

Abderrahmane Habbal
†

Abstract: We consider the Cauchy problem for an elliptic operator, formulated as a Nash
game. The over specified Cauchy data are split among two players : the first player solves
the elliptic equation with the Dirichlet part of the Cauchy data prescribed over the accessible
boundary, and a variable Neumann condition (which we call first player’s strategy) prescribed
over the inaccessible part of the boundary. The second player makes use correspondingly of
the Neumann part of the Cauchy data, with a variable Dirichlet condition prescribed over the
inaccessible part of the boundary. The first player then minimizes the gap related to the non used
Neumann part of the Cauchy data, and so does the second player with a corresponding Dirichlet
gap. The two costs are coupled through a difference term.
Keyworlds: elliptic Cauchy problem, data completion, Nash games

1 Introduction

We consider the following elliptic Cauchy problem :




∇.(k∇u) = 0 in Ω
u = f on Γc

k∇u.ν = Φ on Γc

(1)

where Ω is a bounded open domain in Rd (d = 2, 3) with a sufficiently smooth boundary ∂Ω
composed of two connected disjoint components Γc and Γi. The parameters k, f and Φ are given
functions, ν is the unit outward normal vector on the boundary. The Dirichlet data f and the
Neumann data Φ are the so-called Cauchy data, which are known on the accessible part Γc of the
boundary ∂Ω and the unknown field u is the Cauchy solution.

The solution of Cauchy problem does not always exist for any pair of data (f,Φ), and if such
a solution exists, it does not always depend continuously on the data (Hadamard’s ill-posedness,
see [4]). The Cauchy data (f,Φ) are called compatible (or consistent) if the corresponding Cauchy
problem (1) has a solution (it is then unique thanks to classical continuation arguments).

Our purpose is to introduce an original method to solve the Cauchy problem, based on a game
theory approach.

2 A Nash game formulation of the Cauchy problem

We assume that the boundary ∂Ω and the data k, Φ and f are smooth enough. In this case, the
Cauchy solution u, if it exists, belongs to the space H1(Ω).

For given η ∈ H− 1
2 (Γi) and τ ∈ H

1
2 (Γi), let us define u1(η) and u2(τ) as the unique solutions

in H1(Ω) of the following elliptic boundary value problems :

(SP1)





∇.(k∇u1) = 0 in Ω
u1 = f on Γc

k∇u1.ν = η on Γi

(SP2)





∇.(k∇u2) = 0 in Ω
u2 = τ on Γi

k∇u2.ν = Φ on Γc

(2)

∗ENIT–LAMSIN, moez.kallel@ipeit.rnu.tn,
†J.A.Dieudonné, Université de Nice, habbal@polytech.unice.fr
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The fields u1(η) and u2(τ) are aiming at the fulfillment of a possibly antagonistic goals, namely
minimizing the Neumann gap ‖k∇u1.ν − Φ‖

H− 1
2 (Γc)

and the Dirichlet gap ‖u2 − f‖
H

1
2 (Γc)

. This

antagonism is intimately related to Hadamard’s ill-posedness character of the Cauchy problem,
and rises as soon as one requires that u1 and u2 coincide, which is exactly what the coupling term
‖u1 − u2‖L2(Γi) is for. Thus, one may think of an iterative process which minimizes in a smart
fashion the three terms, namely Neumann-Dirichlet-Coupling terms.

Let us define the following two costs : for any η ∈ H− 1
2 (Γi) and τ ∈ H

1
2 (Γi),

J1(η, τ) =
1

2
‖k∇u1.ν − Φ‖2

H− 1
2 (Γc)

+
α

2
‖k∇u1.ν − k∇u2.ν‖2

H− 1
2 (Γi)

. (3)

J2(η, τ) =
1

2
‖u2 − f‖2

H
1
2 (Γc)

+
α

2
‖k∇u1.ν − k∇u2.ν‖2

H− 1
2 (Γi)

. (4)

where the fields u1(η) and u2(τ) are the unique solutions to (SP1) and (SP2), respectively and α
is a given positive parameter (e.g. α = 1).

We shall say that there are two players, referred to as player 1 or Neumann-gap, and player
2 or Dirichlet-gap. Player 1 controls the strategy variable η, and player 2 controls the strategy
variable τ . Each of the two players tries to minimize its own cost, namely J1 for player 1, and
J2 for player 2. As classical, the fact that each player controls only his own strategy, while there
is a strong dependance of each player’s cost on the joint strategies (η, τ) justifies the use of the
game theory framework (and terminology), a natural setting which may be used to formulate the
negotiation between these two costs.

In order to be consistent with the initial formulation of the Cauchy problem, the relevant
game theoretic framework to deal with is a static with complete information one. In this case, a
commonly used solution concept (roughly speaking, in the game vocabulary, a rational and stable
one) is the one of Nash Equilibria.

We prove that there always exists a unique Nash equilibrium, which turns out to be the recon-
structed data when the Cauchy problem has a solution. We also prove that the completion Nash
game has a stable solution with respect to noisy data. Some numerical 2D and 3D experiments
are performed to illustrate the efficiency and stability of our algorithm. We made a comparison
with the method introduced in [1].

References

[1] R. Aboulaïch, A. Ben Abda, M. Kallel (2008) Missing boundary data reconstruction via an
approximate optimal control, Inverse Problems and Imaging, 2, pp. 411-426.

[2] A. Habbal, M. Kallel (2012) Data completion problems solved as Nash games, J. Phys.: Conf.

Ser., 386, 012004.

[3] A. Habbal, M. Kallel (2013) Neumann–Dirichlet Nash strategies for the solution of elliptic
Cauchy problems, SIAM J. Control Optim., 51, pp. 4066-4083.

[4] J. Hadamard (1953) Lectures on Cauchy’s Problem in Linear Partial Differential Equation,
Dover, New york USA

MOEZ KALLEL 32



Parameter identification in the cardiac electro-mechanical
problems

Cesare Corrado∗ J-F. Gerbeau† P. Moireau‡

In the recent years, data assimilation techniques have been proposed to estimate the state and
the parameters of patient-specific mechanical models of the myocardium. In the present work,
we consider a coupled electromechanical model in order to take advantage of different sources of
clinical exams (typically MRI and ECG).

The mathematical structure of the electrocardiology equations (nonlinear reaction-diffusion
problems) makes it difficult to extend the techniques used in mechanics, namely a nudging filter
for the state and a Reduced Order Unscented Kalman filters (RO-UKF) for the parameters only.
To address this challenging task, we propose to project the electrical state on a basis obtained by
Proper Orthogonal Decomposition (POD) and to only filter the first components with the RO-
UKF algorithm. This approach allows in particular to estimate parameters when error on state
initial condition is considerable, as in the case of Fig. 1. This is the first contribution of this work.

The second contribution is to address the state-parameter estimation on a coupled system
including the mechanics of the myocardium, the bidomain equations for the heart electrophysiology
and an ECG simulator. Of particular interest is the information on electrophysiology provided
by mechanical observations, that would not have been detectable by the ECG only. We show in
particular that for some electrical parameters the mechanical response is longer in time than the
electrical response observed on the ECG. Of particular interest is the case when uncertainty on
parameters is considerable as in the case of Fig. 2. The proposed approach paves the way for the
personalization of a complete electromechanical heart model.

Keyworlds: Electro-mechanics, electrocardiogram, MRI, RO-UKF, POD
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Mathematical Modelling of the electrical wave
in the heart from ion-channels to the body

surface: Direct and inverse problems

Nejib Zemzemi

CARMEN team, Inria Bordeaux Sud-Ouest

200 avenue de la vieille tour, 33405 Talence Cedex

We developed a 3D computational model of the electrical wave in the
heart. This multi-scale mathematical model is heavy in terms of compu-
tational cost. Different numerical schemes are used in order to reduce the
computational cost: We use domain decomposition methods combined with
different time decoupling schemes [1]. We present a 3D anatomically based
model of the whole human with a biophysically detailed representation of
human membrane kinetics, realistic cardiac geometry, fibre orientation and
heterogeneity in electrophysiological properties of cardiac ventricles. The 3D
multi-scale model is used to simulate different heart conditions in order to
test different method introduced to solve the inverse problem in electrocar-
diography.

The mostly used mathematical formulation of the inverse problem in elec-
trocardiography is based on a least method using a transfer matrix that maps
the electrical potential on the heart to the body surface potential (BSP). Lots
of works have been concentrating on the regularization term without think-
ing of reformulating the problem itself. We propose in this study to solve the
inverse problem based on two methods: The first is based on the classical
Steklov-Poincaré approach [3, 2] for the Cauchy problem and the second is
based on a domain decomposition technique on a fictive mirror-like boundary
conditions. We conduct BSP simulations to produce synthetic data and use
it to evaluate the accuracy of the inverse problem solution.

1
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Methods and Strategies for imposing a Maximum Feature Size
in Shape and Topology Optimization

G. Michailidis1*,  G. Allaire1, F. Jouve3

1Ecole Polytechnique, Centre de Mathématiques Appliquées (CMAP) 
91128 Palaiseau, France

michailidis@cmap.polytechnique.fr, allaire@cmap.polytechnique.fr

2Laboratoire J.L. Lions (UMR 7598), University Paris Diderot, Paris,France
Bâtiment des Grands Moulins, 75205 PARIS CEDEX 13 

jouve@math.jussieu.fr 

ABSTRACT

Shape and topology optimization methods usually result in optimized structures that violate industrial
fabrication constraints related to a notion of thickness. For example, in casting, too thick, thin, or
closely spaced features should be avoided. Post-treating the optimized shape is usually a non-trivial
task and can lead to a complete loss of its optimal characteristics. Therefore, it seems preferable to
integrate thickness constraints in the optimization algorithm. Beyond finding a satisfying formulation
of thickness constraints for continuous structures, efficient strategies for their handling need also to be
applied. We discuss several such formulations and strategies for imposing a maximum feature size
and show examples in 2d and 3d.  
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Geometric inverse problem for time-dependent PDE

systems

Maatoug Hassine∗

Abstract: In this talk, we consider a geometric inverse problem constrained by time-dependent

partial di�erential equations. We propose an alternative approach based on the Kohn-Vogelius

formulation and the topological gradient method. The Kohn-Vogelius formulation rephrase the

geometrical inverse problem into a shape optimization one. The obtained shape optimization

problem is treated using the topological gradient method.

In the �rst pat of the talk we derive a topological sensitivity analysis for the considered time-

dependent partial di�erential equations. The obtained results are valid for large class of cost

functions.

In the second part of the talk, we propose a one-shot reconstruction algorithm. The e�ciency

and accuracy of the proposed algorithm are illustrated by some numerical results.

Keyworlds: Inverse problem, topological gradient, topological sensitivity, reconstruction al-

gorithm.

∗FSM�Monastir University, maatoug.hassine@enit.rnu.tn,
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Optimal design problems in a dynamical context: an

overview

Arnaud Munch
∗

Abstract: We review here the problem which consists to minimize the norm of HUM controls

for the wave and heat-like equations with respect to their support. The problem reduces to an

optimal design problem for a dynamical equation de�ned on a bounded cylinder. As is well-known,

this type of problem may have no solution in the class of characteristic functions. First, we show

how, by the use of convex analysis, one may associate a well-posed reformulation in the class of

density functions. Then, we present some numerical experiments that allow to separate qualita-

tively the heat situation from the wave one. We also discuss some recent contributions where the

support evolves in time, the minimization over weighted Carleman type norms and the related

stabilization issue.

Keyworlds: Hum control, optimal design problems, convex analysis.

∗Université Blaise Pascal (Clermont Ferrand), France, arnaud.munch@math.univ-bpclermont.fr,
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Nonstandard topological optimization methods

Mohamed Masmoudi
∗

Abstract: Mathematical analysis is a powerful tool to solve applied mathematics problems.
Even topological optimization, which can be seen as a part of discrete mathematics, is using
intensively variational methods.

In this presentation we will show two "analysis free" industrial topological optimization prob-
lem.

The goal of the �rst application is to �nd the optimal mask of a highly accurate resistor. This
problem has been solved using number representation techniques.

The second application deals with optimal design of the feeding system (repartitor) of a spatial
antenna. We used algebraic approaches to solve this problem.

In both cases, the classical topological optimization tools are likely to fail in solving these two
real life problems.

Keyworlds: Topological optimization, variational methods, number representation techniques.

∗Institut Mathématiques de Toulouse, France, masmoudi@math.univ-toulouse.fr,
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2.3 Inverse problems and Carleman estimates (CE1)
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lnverse spectral conductivity problem in a periodic waveguide

E. Soccorsi (Marseille)

Abstract

Given an unbounded cylindrical domain Ω = ω × R, where ω is a C1 connected bounded open
subset of R2, we consider the operator A = −div(a∇·)+V , acting in L2(Ω), with Dirichlet boundary
conditions. Here V ∈ L∞(Ω) and a ∈ W 2,∞(Ω) ∩ C1(Ω) are 2π-periodic functions with respect to
the infinite variable of Ω. The operator A admits a fiber decomposition Aθ, θ ∈ [0, 2π), and its
spectrum is absolutely continuous. We prove that a and V may be uniquely determined from the
partial knowledge of the spectral data of any Aθ, for [0, 2π).

This is joint work with O. Kavian (Versailles) and Y. Kian (Marseille).
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STABILITY ESTIMATE IN DETERMINATION OF A COEFFICIENT IN TRANSMISSION
WAVE EQUATION BY BOUNDARY OBSERVATION

BOCHRA RIAHI

ABSTRACT

We consider a transmission wave equation in two embedded domains in R2, we study the global stability
in determination of a discontinuous coefficient which is variable on each subdomain and their traces are
constant at the interface from data of the solution in a subboundary over a time interval.
Providing regular initial data, we prove an hölder stability estimate in the inverse problem with a single
measurement. Moreover the exponent in the stability estimate depends on the regularity of initial data.
The key is the global Carleman estimate.

Date: February 26, 2014.
1
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Inverse problems associated with linear and non-linear parabolic systems: two
different approaches

M. Cristofol
(michel.cristofol@univ-amu.fr)

I2M, Ecole Centrale, Universite Aix-Marseille.

Abstract. In this talk I am interested to give an overview of recent results concerning the re-
construction of one or several coefficients associated to systems of linear and non linear parabolic
equations.
The main goal is to obtain these results minimizing the observations. The first results (see [1],
[2], [3] and [4]), involve Carleman inequalities and give a Lipschitz stability results but a mea-
surement of the components of the system on all the domain is necessary. The last result (see
[5]) avoids this constraint and concerns an uniqueness result for a strong non linear parabolic
system (Lotka Volterra type).
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A data completion algorithm using boundary
integral equations

Yosra Boukari‡, Houssem Haddar?

‡CPT, University of Aix-Marseille.

?Defi, CMAP, Ecole Polytechnique.

Email: boukari@cmap.polytechnique.fr

Email: haddar@cmapx.polytechnique.fr

Abstract
The aim of the present work is to solve the Cauchy problem for the Helmholtz
and the Laplace equations using a non-iterative method based on the surface
representation of the solution. More specifically, we would like to determine
the Cauchy data associated with a solution of the Helmholtz or the Laplace
equation in a part of the boundary of a bounded domain from the knowledge
of the Cauchy data on the complementary part. We consider the setting of a
lipschitz domain that contains an inclusion, which means that the boundary
of this domain can be split in two parts: an exterior boundary and an interior
boundary that we denote by Γe and Γi respectively. Hence, the inverse prob-
lem under concern consists in reconstructing the interior Cauchy data on Γi

by knowing the Cauchy data on the exterior boundary Γe. This problem has
been shown to be an ill-posed problem since 1953.
We propose a new method to solve this inverse problem. Using the boundary
integral equation representation along with the trace of the solution and its
normal derivative on Γe and Γi, we derive a linear integral equation system
that combines the known and unknown Cauchy data. The ill posedness of the
problem shows up in the compactness of the component of the operator that
has to be inverted. We prove the injectivity and the densness of the range
of this operator in appropriate Sobolev spaces. Moreover, we show that our
method naturally handles the case of noisy data. In fact, in our formulation
the available Cauchy data are multiplied by an operator that has the same
range as the operator to be inverted, which makes possible the use of classical
regularization techniques for noisy data, such as the Thikonov regularization.
Some numerical results are provided that show the efficiency of the method

1
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for different shapes of the domain, different values of the wave number and
also for noisy data. Note in addition that the implemented algorithm has
the advantage to be fast as it does not rely on an iterative scheme.

Keys words: Inverse Problem, Helmholtz equation, Laplace equation,
Data completion, Integral equations.
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2.4 Inverse problems and Carleman estimates (CE2)
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DETERMINATION OF A TIME-DEPENDENT COEFFICIENT IN A
QUANTUM CYLINDRICAL WAVE GUIDE

Abstract. Let Ω = ω × R be a cylindrical open subset of R3, with ω a bounded domain of
R2. These domains are also called cylindrical wave guide. We study the inverse problem which
consists in determining a scalar time-dependent potential q(t, x), appearing in a boundary value
problem associated to the Schrödinger equation −i∂tu − ∆u + qu = 0 on Q = (0, T ) × Ω, from
boundary measurement on Q. The observation is given by an operator closed to the so called
Dirichlet-Neumann map. We obtain uniqueness as well as stability for this inverse problem.

1
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New Kind of Observations in an Inverse

Parabolic Problem

Kaddouri Isma

University of Sciences and technology Houari Boumediene,

Algiers, Algerie and Aix-Marseille University

Marseille, France,

email: isma.kaddouri@gmail.com

Joint work with M. Cristofol, G. Nadin and L. Roques

Abstract

In this talk, I analyze the inverse problem of determining the reaction

term f(x, u) in reaction-diffusion equations of the form ∂tu−D∂xxu =

f(x, u), where f is assumed to be periodic with respect to x ∈ R. Start-

ing from a family of exponentially decaying initial conditions u0,λ, I

will show that the solutions uλ of this equation propagate with con-

stant asymptotic spreading speeds wλ. The main result shows that the

linearization of f around the steady state 0, ∂uf(x, 0), is uniquely deter-

mined (up to a symmetry) among a subset of piecewise linear functions,

by the observation of the asymptotic spreading speeds wλ.

1
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Boundary Voltage Perturbations Resulting from the Presence of

Thin Interfaces

Abdessatar Khelifi ∗ Habib Zribi †

Abstract

In this talk, we derive high-order asymptotic formulae for two- or three-dimensional steady state
voltage potentials associated with thin conductivity imperfections having no uniform thickness. These
formulae recover highly conducting inclusions and those with interfacial resistance. Our calculations are
rigorous and based on layer potential techniques.

Keywords: Small surface perturbations, full-asymptotic expansions, generalized polarization tensors, boundary

integral method

1 Problem formulation

Consider a homogeneous conducting object occupying a bounded domain Ω ⊂ Rd (d = 2, 3) , with a
connected C2-surface ∂Ω. We assume, for the sake of simplicity, that its conductivity is equal to 1. Let
D be a bounded C2,η domain in Ω for some η > 0, and of conductivity equal to some positive constant
k ̸= 1. We assume that dist(D, ∂Ω) ≥ C > 0. The voltage potential in the presence of the inclusion D is
denoted by u. It is the solution to





∇·
(
1 + (k − 1)χD

)
∇u = 0 in Ω,

∂u

∂ν

∣∣
∂Ω

= g,

∫

∂Ω

u = 0,
(1)

where χD is the indicator function of D. Here ν denotes the unit outward normal to the domain Ω and
g represents the applied boundary current; it belongs to the set L2

0(∂Ω) = {f ∈ L2(∂Ω),
∫

∂Ω
f = 0}.

Let Dϵ be an ϵ-perturbation of D, i.e. ∂Dϵ be given by

∂Dϵ := {x̃ = x+ ϵh(x)ν(x) := Ψϵ(x), x ∈ ∂D}, (2)

where ν is the unit outword normal to the domain D and the function h ∈ C2(∂D). We assume that
h(x) ≥ C > 0 for all x ∈ ∂D.
Let uϵ be the solution to 




∇·
(
1 + (k − 1)χDϵ

)
∇uϵ = 0 in Ω,

∂uϵ

∂ν

∣∣
∂Ω

= g,

∫

∂Ω

uϵ = 0.
(3)

The main achievement of this work is to adopt the FE method to derive formal high-order terms in
the asymptotic expansion of (uϵ − u)|∂Ω as ϵ → 0.

2 Formal derivations: field expansion (FE) method

In order to derive a formal asymptotic expansion for uϵ to order an integer N , we apply the FE method,
see [5]. Firstly, we expand uϵ in powers of ϵ, i.e.

uϵ(x) = u0(x) + ϵu1(x) + ϵ2u2(x) + · · · , x ∈ Ω,

∗Département de Mathématiques, Faculté des Sciences de Bizerte, Tunisia (abdessatar.khelifi@fsb.rnu.tn).
†Department of Mathematics, Faculty of Sciences, University of Tunis El Manar, Tunis 2092, Tunisia

(zribi@cmapx.polytechnique.fr).
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Figure 1: Main domain and thin inclusion

where un is well defined in Ω\∂D and satisfies

∆un = 0 in Ω\D, ∆un = 0 in D,
∂un

∂ν
= gδ0n on ∂Ω, (4)

for n = 0, · · · , N . Here δ0n is the Kronecker symbol. We formally obtain the following theorem.

Theorem 2.1 The following asymptotic formula formally holds

uϵ(x) = u(x) +

N∑

n=1

ϵnun(x) +O(ϵN+1), x ∈ ∂Ω, (5)

where the remainder O(αN+1) depends on N , Ω, the C2-norm of X, the C1-norm of ϱ, and dist(D, ∂Ω),
u1 is the unique solution os some PDE’equation.

2.1 Relationship between boundary measurements and h

For f ∈ L2
0(∂Ω), let v be the solution of





∇
((

1 + (k − 1)χ(D)
)
∇v)

)
= 0 in Ω,

∂v
∂ν

∣∣∣
∂Ω

= f,
∫

∂Ω
v = 0.

It then follows from (5) that
∫

∂Ω

f(uϵ − u)dσ = ϵ

∫

∂Ω

fu1dσ +O(ϵ2) = ϵ

∫

∂Ω

(fu1 − v
∂u1

∂ν
)dσ +O(ϵ2).

Finally, we find the following relationship between boundary measurements and the shape deformation
h:

∫

∂Ω

f(uϵ − u)dσ(x) = ϵ(1 − k)

∫

∂D

h
[
k
∂u

∂ν

∣∣∣
−

∂v

∂ν

∣∣∣
−

+
∂u

∂T
· ∂v
∂T

]
dσ(x) +O(ϵ2), (6)

where
∂

∂T
=

∂

∂Tφ
Tφ +

∂

∂Tθ
Tθ .

The formula (6) can play a key role in developing effective algorithms to determine certain properties
of the shape of an inhomogeneity from measurements on ∂Ω.

3 Layer potential techniques method

Let B be a bounded Lipschitz domain in R3. Let Γ(x) be the fundamental solution of the Laplacian ∆:
Γ(x) = − 1

4π|x| . The single and double layer potentials of the density function ϕ on ∂B are defined by

SBϕ(x) =

∫

∂B

Γ(x− y)ϕ(y)dσ(y), x ∈ R3, (7)

DBϕ(x) =

∫

∂B

∂

∂νy
Γ(x− y)ϕ(y)dσ(y), x ∈ R3 \ ∂B. (8)
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The following formulae give the jump relations obeyed by the double layer potential and by the normal
derivative of the single layer potential on general Lipschitz domains:

∂(SBϕ)

∂ν

∣∣
±(x) =

(
± 1

2
I + (KB)∗)

ϕ(x) a.e. x ∈ ∂B, (9)

(DBϕ)
∣∣
±(x) =

(
∓ 1

2
I + KB

)
ϕ(x) a.e. x ∈ ∂B, (10)

for ϕ ∈ L2(∂B), where KB is the operator defined by

KBϕ(x) = p.v.
1

4π

∫

∂B

< y − x, ν(y) >

|x− y|3 ϕ(y)dσ(y),

and K∗
B is the L2-adjoint of KB , that is,

K∗
Bϕ(x) = p.v.

1

4π

∫

∂B

< x− y, ν(x) >

|x− y|3 ϕ(y)dσ(y). (11)

The following lemma is of importance to us. For proof, see [6].

Lemma 3.1 The operator λI−K∗
B is invertible on L2

0(∂B) if |λ| ≥ 1
2
, and for λ ∈ (−∞,− 1

2
]∪( 1

2
,+∞),

λI − K∗
B is invertible on L2(∂B).

3.1 Asymptotic expansion of the layer potential K∗
Dϵ

Let K∗
Dϵ

be the integral operator defined for any density ψ̃ ∈ L2(∂Dϵ) by

K∗
Dϵ
ψ̃(x̃) =

1

4π

∫

∂Dϵ

< x̃− ỹ, ν̃(x̃) >

|x̃− ỹ|3 ψ̃(ỹ)dσϵ(ỹ). (12)

For (φ, θ), (α, β) ∈ ϑ. Set

x = X(φ, θ), x̃ = X̃(φ, θ) = x+ ϵϱ(φ, θ)ν(x),

y = X(α, β), ỹ = X̃(α, β) = y + ϵϱ(α, β)ν(y).

Introduce a sequence of integral operators (K(n)
D )n∈N, defined for any ψ ∈ L2(∂D) by

K(n)
D ψ(x) :=

1

4π

∫

∂D

kn(x, y)ψ(y)dσ(y), for n ≥ 0.

In particular K(0)
D = K∗

D. Let Ψϵ be the diffeomorphism from ∂D onto ∂Dϵ given by Ψϵ(x) = x +
ϵh(φ, θ)ν(x), where x = X(φ, θ). The following theorem holds.

Theorem 3.1 Let N ∈ N. There exists C depending only on N , ∥X∥C2 and ∥h∥C1 , such that for any
ϕ̃ ∈ L2(∂Dϵ),

∥∥∥KDϵ [ϕ̃] ◦ Ψϵ − K∗
D(ϕ) −

N∑

n=1

ϵnK(n)
D (ϕ)

∥∥∥
L2(∂D)

≤ CϵN+1∥ϕ∥L2(∂D),

where ϕ := ϕ̃ ◦ Ψϵ, K∗
D is defined in (11), and K(1)

D is given by:

K(1)
D ϕ(x) =2h(x)~(x)K∗

Dϕ(x) − 2K∗
D(h~ϕ)(x) +

∂(DD(hϕ))

∂ν
(x)

− 1√
det(G)

(
∇φ,θ ·

(
h
√
det(G)G−1∇φ,θSDϕ

))
(x). (13)

Define

ϕ(0) = (λI − K∗
D)−1G0 = (λI − K∗

D)−1
(∂Hϵ

∂ν

∣∣
∂D

)
, (14)

and for 1 ≤ n ≤ N ,

ϕ(n) = (λI − K∗
D)−1

(
Gn +

n−1∑

p=0

K(n−p)
D ϕ(p)

)
. (15)

We obtain the following lemma.
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Lemma 3.2 Let N ∈ N. There exists C depending only on N , the C2-norm of X, and the C1-norm of
h such that

||ϕϵ −
N∑

n=0

ϵnϕ(n)||L2(∂D) ≤ CϵN+1,

where ϕ(n) are defined by the recursive relation (15).

If we define the operator E on L2
0(∂Ω) by

E(v)(x) := ND(λI − K∗
D)−1

( ∂

∂ν
(DΩv)

∣∣
∂D

)
(x), x ∈ ∂Ω,

then it follows that

(I + E)(uϵ − u)(x) = −
N∑

n=1

ϵnvn(x) +O(ϵN+1), x ∈ ∂Ω, (16)

where, for n ∈ N and for x ∈ ∂Ω,

vn(x) :=
∑

i+j+k=n

∫

∂D

( ∑

|α|=i

1

α!
(h(y)ν(y))α∂α

y N(x, y)
)
σ(j)(y)ϕ(k)(y)dσ(y). (17)

We need the following lemma, see [3] for a proof.

Lemma 3.3 The operator I + E is invertible on L2
0(∂Ω).

Observe that
(uϵ − u)|∂Ω = O(ϵ),

and hence,
Hϵ(x) −H(x) = O(ϵ).

Thus if we define G1
n, n ∈ N, for Hϵ replaced with H, and define ϕ

(n)
1 and v1

n by (14), (15), and (17),
then vn − v1

n = O(ϵ). Therefore we get

uϵ(x) − u(x) = −ϵ(I + E)−1(v1
1)(x) +O(ϵ2), x ∈ ∂Ω. (18)

Repeat the same procedure with H − ϵDΩ(I + E)−1(v1
n) instead of H to get v2

n. Then vn − v2
n = O(ϵ2)

and hence

uϵ(x) − u(x) = −
2∑

n=1

ϵn(I + E)−1(v2
n)(x) +O(ϵ3), x ∈ ∂Ω.

Repeating the same procedure until we get vN
n , and we obtain the following theorem.

Theorem 3.2 Let vN
n , n = 1, . . . , N , be the functions obtained by the above procedure. Then the following

formula holds uniformly for x ∈ ∂Ω:

uϵ(x) − u(x) = −
N∑

n=1

ϵn(I + E)−1(vN
n )(x) +O(ϵN+1).

The remainder O(ϵN+1) depends only on N , Ω, the C2-norm of X, the C1-norm of h, and dist(D, ∂Ω).

4 Generalized polarization tensors (GPTs)

Definition 4.1 Let D a Lipschitz bounded domain in R3 and the conductivity of D be k, 0 < k ̸= 1 <
+∞. For two multi-index α and β, we define the generalized polarization tensor Mαβ by

Mαβ(k,D) :=

∫

∂D

yβϕα(y)dσ(y), (19)

where ϕα is given by

ϕα(y) := (λI − K∗
D)−1

(
νx · ∇xα

)
(y), y ∈ ∂D. (20)

If |α| = |β| = 1, we denote Mαβ by (mpq)
d
p,q=1 and call M = (mpq)

d
p,q=1 the polarization tensor of

Pólya-Szegö.
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The following theorem concerning perturbations of the GPTs can be done in exactly the same manner
as in two dimensions.

Theorem 4.1 Suppose that aα and bβ are constants such that H =
∑

α aαx
α and F =

∑
β aβx

β are
harmonic polynomials. Then

∑

α,β

aαbβMαβ(k,Dϵ) −
∑

α,β

aαbβMαβ(k,D) = ϵ(k − 1)

∫

∂D

h(y)

[
∂v

∂ν

∣∣∣
−

∂w

∂ν

∣∣∣
−

+
1

k

∂w

∂T

∣∣∣
−

· ∂v
∂T

∣∣∣
−

]
(y)dσ(y)

+O(ϵ2),

where v and w satisfy suitable transmission problems.

According to [4] and [2], the PT associated with an unknown inclusion can be detected from boundary
measurements. Following once again [4], given an arbitrary shape, one can find an equivalent ellipsoid
with the same PT. Therefore, recovering more shape details than the equivalent ellipsoid using a finite
number of GPTs is an ambitious question.
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Stability estimate for an inverse problem for the wave equation
from boundary measurements

Abstract

In this work, we study the inverse problem of determining the electric potential q involved in the
wave equation, in a bounded domain from boundary observations. where q is depending not only on
the spatial variable but also on the time variable. We prove a log-type estimate which shows that q
depends stably on the Dirichlet to Neumann-map, in a subset S of our domain, assuming that it is
known outside this region.

1
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2.5 Analysis of some inverse problems from physical applications
(IPPA)

Minisymposium Juliette Leblond





Spectral properties of the Neumann Poincaré operator in

composite media with close to touching inclusions

Eric Bonnetier
∗

Abstract

We study an integral formulation of a di�usion equation in a 2D composite medium, that contains

smooth, close to touching inclusions, in view of characterizing the regularity properties of the

gradient of the solution. Two parameters play an impor- tant role: the conductivity contrast

and the inter-inclusion distance. We study the spectral properties of the corresponding integral

operator, the Neumann-Poincaré operator, as these parameters degenerate. Joint work with F.

Triki.

∗Université Joseph Fourier Grenoble, Laboratoire Jean Kuntzmann
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An ill-posed parabolic evolution system for dispersive

deoxygenation-reaeration in waters.

Faker Ben Belgacem∗

Abstract

We consider an inverse problem that arises in the management of water resources and pertains
to the analysis of the surface waters pollution by organic matter. Most of physical models used
by engineers derive from various additions and corrections to enhance the earlier deoxygenation-
reaeration model proposed by Streeter and Phelps in 1925, the unknowns being the biochemical
oxygen demand (BOD) and the dissolved oxygen (DO) concentrations. The one we deal with
includes Taylor's dispersion to account for the heterogeneity of the contamination in all space
directions. The system we obtain is then composed of two reaction-dispersion equations. The
particularity is that both Neumann and Dirichlet boundary conditions are available on the DO
tracer while the BOD density is free of any condition. In fact, for real-life concerns, measurements
on the dissolved oxygen are easy to obtain and to save. In the contrary, collecting data on the
biochemical oxygen demand is a sensitive task and turns out to be a long-time process. The
global model pursues the reconstruction of the BOD density, and especially of its ux along the
boundary. Not only this problem is plainly worth studying for its own interest but it can be
also a mandatory step in other applications such as the identi�cation of the pollution sources
location. The non-standard boundary conditions generate two di�culties in mathematical and
computational grounds. They set up a severe coupling between both equations and they are cause
of ill-posedness for the data reconstruction problem. Existence and stability fail. Identi�ability is
therefore the only positive result one can seek after ; it is the central purpose of the paper. We end
by some computational experiences to assess the capability of the mixed �nite element capability
in the missing data recovery (on the biochemical oxygen demand). Joint work with M. Azaez, F.
Hecht, C. Le Bot (http://hal.archives-ouvertes.fr/hal00820289).

∗UT Compiègne, Laboratoire de Math. App. de Compiègne, LMAC
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An inverse problem of magnetization in geoscience

Sylvain Chevillard∗

Abstract

When rocks are heated (typically when they are formed, or after subsequent alter- ation), they
can become magnetized by the ambient magnetic

eld. This remanent magnetization is used to study important processes in Earth sciences, since
it pro- vides records of past variations of the geodynamo. It has been used, e.g., to study motion
of tectonic plates and geomagnetic reversals. SQUID microscopes are sen- sitive instruments, able
to measure the magnetic

eld produced by the remanent magnetization of thin slabs of rocks. More precisely, it can
measure the normal component of the magnetic

eld on a plane slightly above the sample, with a good spatial resolution. We will present on-
going research on the inverse problem consist- ing in recovering the magnetization distribution of
the sample, from the measures given by a SQUID microscope.

∗INRIA Sophia Antipolis, Equipe Apics
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Parameter estimation using macroscopic models of the

di�usion MRI signal

Jing-Rebecca Li ∗

Abstract

The water proton magnetization in biological tissue due to di�usion-encoding magnetic �eld gra-

dient pulses can be modeled by a microscopic-scale di�usive PDE posed in an image voxel. Two

macroscopic models governing the time evolution of the magnetizations in di�erent di�usion sub-

domains of the voxel have been for- mulated and take form of a system of coupled ODEs. We

solve the least squares problem of �tting the signal predicted by the microscopic PDE model to the

two macroscopic ODE models to obtain estimates of the model parameters, such as the cellular

volume fraction and the total cellular surface to volume ratio. We discuss the di�erent aspects of

this parameter estimation problem in view of the potential application to experimentally acquired

di�usion MRI data in biological tissue.

∗INRIA Saclay et Ecole Polytechnique CMAP, Equipe Dé�
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2.6 Application of inverse methods in aerospace industry (AI)

Minisymposium organized by Bernard Troclet





Cavities identi�cation problems with missing data

Amel Ben Abda ∗ Emne Jaïem † Sinda Khalfallah ‡ Abdelmalek Zine §

Abstract: The main idea of this work is an analysis of geometric inverse problems related to
the identi�cation of cavities in a special case where the problem is compounded by missing data
in two spatial dimensions. The overdetermined data is given by the displacement �eld and the
shear stress whereas no information is given on the normal component of the normal stress. We
introduce a Dirichlet-Neumann mis�t function and we rephrase the inverse problem into a shape
optimization one. The obtained optimization problem is solved by a steepest descent algorithm
using the gradient information and the level set method.
Keyworlds: Cavities identi�cation, missing data, shape derivative, level set method.

Résumé : Nous nous intéressons dans ce travail à l'analyse d'un problème inverse géométrique
d'identi�cation de cavités par des données "peu" surdéterminées sur le bord. La donnée surdéter-
minée pour la reconstruction de la frontière inconnue est la contrainte de cisaillement (en plus de
champs de déplacement). En introduisant une approche Dirichlet-Neumann, nous transformons
notre problème en un problème d'optimisation de forme. La combinaison de la notion de dérivée
par rapport au domaine et de la méthode des ensembles de niveaux, a permis la mise en oeuvre
d'un algorithme de descente de type gradient pour la résolution numérique du problème inverse
en question.
Mots clés : Identi�cation de cavités, données "peu" surdéterminées, dérivée par rapport au do-
maine, méthode des ensembles de niveaux.

1 Problem setting

Given a bounded domain B ⊂ R2, with boundary Γ0, the problem consists in �nding a bounded
domain A ⊂ B with boundary Γ, a displacement u de�ned on Ω = B \A and the tensor

σ(u) =
E

1 + ν

[
ε(u) +

ν

1− 2ν
tr(ε(u))Id

]

such that





− div(σ(u)) = 0 in Ω,

σ(u)n = 0 on Γ,

u = T on Γ0,

σ(u)n0 · τ = g on Γ0.

(1)

Above, n respectively n0 is the outer normal unit vector to the boundary Γ respectively Γ0, τ
is the tangent vector to the boundary Γ0 and

ε(u) =
1

2
(∇u+∇uT ).

For a given Ω, let (σD, uD) and (σN , uN ) be the solutions of the following Dirichlet, respectively
Neumann problem 




− div(σ(uD)) = 0 in Ω,

σ(uD)n = 0 on Γ,

uD = T on Γ0,

∗ENIT�lamsin, amel.benabda@enit.rnu.tn,
†ENIT�lamsin, emna23jaiem@gmail.com,
‡ENIT�lamsin, sinda _khalfallah@yahoo.fr,
§Institut Camille Jordan, École Centrale de Lyon, abdel-malek.zine@ec-lyon.fr.
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and





− div(σ(uN )) = 0 in Ω,

σ(uN )n = 0 on Γ,

uN · n0 = T · n0 on Γ0,

σ(u)n0 · τ = g on Γ0.

The problem (1) is formulated to a shape optimization one (see [1] and [2]).




Find Ω such that

J(Ω) = min
Ω̃
J(Ω̃),

using the error functional J

J(Ω) :=
1

2

∫

Ω

(σ(uD)− σ(uN )) : (ε(uD)− ε(uN )).

2 Shape derivative of the functional J

In order to implemente a numerical minimization algorithm using the gradient method, we use
the notion of shape derivative. In fact, there exists a function G de�ned on Γ such that

J ′(Ω, h) =

∫

Γ

G(h · n) where

G =
1

2
[(σD : ε(uD))− (σN : ε(uN ))] +

[
(nTσN ) . (∇uN n)

]
−
[
(nTσD) . (∇uD n)

]
.

This result opens the road to choose like a descent direction of the functional J

h ∈ Q such that h|Γ = −Gn where

Q = {h ∈ C1,1(Ω)2; h = 0 on Γ0}.
To obtain numerical solutions for our shape optimization problem, we use the level set method
combined with the shape derivative. In fact, we parameterize the boundary of Ω by means of a
level set function Ψ (see [3] and [4]) which evolution is governed by the following Hamilton-Jacobi
transport equation

∂Ψ

∂t
+ V |∇Ψ| = 0 in Ω,

where we choose the normal velocity V equal G.
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Hybrid Inverse Boundary Element Method for the determination of the optimal spectral 

characteristics of a complex radiating noise source. 
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1
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ABSTRACT 
 

A robust inverse method based on the combination of near field acoustic measurements with a novel 

Hybrid Inverse Boundary Element Method (HIBEM) is presented. Its combines Acoustic Reciprocity 

Principle (ARP) and Least Mean Square (LMS) or Single Value Decomposition (SVD) to optimally 

determine the generalized spectral characteristics of very complex noise sources, typically 

encountered in transportation industry (engine, tire, exhaust,..). The first and second sections of the 

paper briefly describes the theoretical background and the numerical procedures used to determine the 

optimal spectral characteristics of the radiating source. The third section of the paper gives results 

obtained with the developed software tool to characterize a car engine.  

 

1. Integral  representation of the radiated acoustic pressure 

 
The acoustic pressure radiated by a complex acoustic source placed as shown in figure 1, inside a 

closed fictive surface S admits [1] the following integral representation in the acoustic domain a 

occupying the exterior  of the surface S, 

 )()
)(

),(
)()( ydS

yn

yxG
yxp

S



         (1) 

where,  represents the density of a double layer potential distributed on the fictive surface S. G(x,y) 

= -exp (ikR(x,y)) /(4R(x,y)) is the free space Green’s function corresponding to the elementary 

solution of acoustic wave equation written in an infinite three dimensional space with harmonic time 

dependence (exp(-it)); k=/c is the acoustic wave number,  is the circular frequency and c is the 

speed of sound. R(x,y) is the distance separating two points x et y located in the external acoustic 

domain a.  

 

 

 
 

 

 

 

 

 

      Acoustic Source 
 

 

The density is related to the normal component  of the acoustic acceleration of the acoustic media 

at the surface S by the following  Fredholm integral equation of first kind, 

  )()
)()(

),(1
)()(

2

ydS
ynxn

yxG
yx

S



  

              (2) 

where  is the mass density of the acoustic media.  

y 

x 

S 

Figure 1 : Noise Source placed inside 

                    a fictive surface S 

n 

External Acoustic 

Domain  a 

Microphone Array 

R(x,y) 
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As shown in reference [4], the components of the density vector  (defined at the nodes of the surface 

S) are related to the acceleration normal components of the vector defined at the center of gravity 

of the boundary elements) by the following algebraic system of linear equations: 

  D= C 
t         

 

where, D is the surface acoustic admittance square (N x N) complex matrix resulting from the BEM 

discrete form of the surface admittance operator,  

   




SxS

xdSydS
ynxn

yxG
yxD )()(

)()(

),(1
)()('),'(

2


     (4) 

and, C is the surface coupling rectangular (E x N) real matrix resulting from the BEM discrete form of 

the coupling operator, 

    )(  )('),'( xxC
S

         (5) 

Where N is the number of Nodes and E is the number of Elements of the BEM model of the fictive 

discrete surface S enveloping the real source. 

Again as shown in reference [4], the acoustic pressure vector P measured by a microphone array (of 

dimension M) is given by, 

  P = B 
t
 q         (6) 

where B is the rectangular (N x M) Reciprocal Transfer Matrix(RTM), each column k of B  

corresponds to the “blocked” pressure vector induced on the surface S (considered as rigid) by an 

unitary point source placed at the microphone location xk . The vector, 

   q = -C 
t          

corresponds to the acceleration flux vector of dimension N, the components of q are defined at the 

nodes of the fictive surface S. From equation (6) one can easily remarks that the so-called Acoustic 

Transfer Vectors (ATV) simply correspond to the rows of the reciprocal transfer matrix B (or to the 

columns of B transpose).These vectors are obtained by exploiting the Acoustic Reciprocity 

Principle(ARP) which is must faster than doing the direct transfer between field microphones and 

vibrating elements or nodes. 

 

The inverse ill posed problem consists of determining the N components of the optimal flux vector 

q by minimizing the generalized  Tikhonov functional, 

  
22

Lq PqBqJ meas

t  )(       (8) 

where the first term corresponds to the “error”in the sense of the L2 norm .  between the vector 

Pmeas measured by the antenna of M microphones (M<<N) and the predicted vector P resulting 

from the matrix equation (6); and the second term represents a penalty term involving the discrete 

L2 norm of q in order to prevent that the reconstructed acceleration flux grows without bound 

during the minimization procedure.   

 

The novel approach consist of representing the acceleration flux vector q on an ad hoc basis  

  q =            

by choosing the Wave-Envelope Vectors (WEV) satisfying the following linear eigen-value problem: 

   SS MK          (10) 

where Ks is a real symmetric semi-definite positive matrix resulting from the FEM discrete form of 

the surface bilinear operator given by, 

   )dS grad gradK S

S

SS ',()',(         (11) 
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Where grads is the surface Laplace operator; and where the matrix Ms is a real symmetric definite 

positive matrix resulting from the FEM discrete form of the surface bilinear operator defined by, 

   dS M
S

S ',)',(           (12) 

is a diagonal matrix composed by the eigen-values of the surface Laplace operator. 

The matrix operator L appearing in the second term of the Thikonov functional (8) is chosen as the 

Cholesky decomposition of the symmetric matrix Ms such that, 

  S

t MLL           (13) 

The Wave Envelope Vectors are normalized such that the matrices Ms and Ks satisfy respectively, 

  IM s

t   and      s

t K      (14-1; 14-2) 

The Thikonov functional could be now written in term of the components of the generalized vector , 

  meas

h

measmeas

hhhh PPPHI HHJ  )Re())()(  2    (15) 

where, 

 H = B
t         

 

corresponds to the Generalized Reciprocal Transfer Matrix (GRTM). The columns of the GRT Matrix 

corresponds to the so-called Modal Acoustic Transfer Vectors (MATV). Again these vectors are 

generated taking advantage of the Acoustic Reciprocity Principle (ARP). 

 

2.  Inverse technique for the reconstruction of the acceleration flux vector q 

 

The minimum  of the Thikonov functional is obviously given by, 

  measP . R           (17) 

where, 

    hh HI HH R
1

         (18) 

is the regularized pseudo-inverse of the Generalized Reciprocal Transfer Matrix H. The standard 

Least Mean Square (LMS) approach or Single Value Decomposition (SVD) of the GRT Matrix H 

could be used to compute the optimal vector  As discussed in references [2,5] the optimal 

choice of the positive parameter  could be done using ad hoc filtering techniques combined with the 

Morozov Discrepancy Principle (MDP) such that the reconstructed acceleration flux

recq  solution of 

the functional (8), must satisfies the discrepancy equation: 

  
22

 MPqB measrec

t         (19) 

where 2
 is the variance of the noise in data and M is the number of microphones. 

 

3.  Results 
The proposed Inverse Boundary Element Method (IBEM) has been applied to characterize a car 

engine in the low frequency band f < 1000Hz. Figure 1-b shows the experimental set up where a 

microphone array (60 microphones) is placed on the top of a running car engine at 3000 rpm. The 

microphone array has been placed on right, left, top and front sides of the engine. Figure 2-a shows 

the IBEM model corresponding to the fictive surface enveloping the car engine which is nearly a 

closed box meshed with approximately 250 quadrangular boundary elements. Figure 2-b shows the 

comparison between measured and predicted averaged sound pressure levels (240 microphones), 

where 20 eigen-functions (wave-envelopes) have been used to represent the acceleration flux through 

the enveloping surface S. Figure 2-c shows the comparison between measured and predicted sound 

pressure levels at the position of a microphone not included in the global cost function. The error 

between measured and predicted results remains less than 2 dB. This confirms the robustness of the 

proposed inverse method to predict and extrapolate the acoustic pressure radiated by the engine. 

Finally Figure 2-d shows the measured and the predicted acoustic pressures radiated by the engine at 

600 Hz. 
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CONCLUSION 

 
A hybrid inverse boundary element method based on the exploitation of the reciprocity principle in 

acoustics combined with a wave envelope technique has been developed and implemented in 

RAYON
R
-IBEM solver. This method has been successfully applied to characterize a real car engine 

as a distributed noise source which could be used to excite the car body and predict either interior and 

exterior noise (pass by noise). This method which has a big potential of applications, could be 

advantageously used to characterize and identify noise sources in transportation industries [3].  
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Figure 2-a. Engine IBEM Model  

Figure 2-c. Local Sound Pressure Level 

Figure 2-b. Averaged Sound Pressure Level 

Figure 2-d. Radiated Acoustic Pressure  at 600Hz              
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Abstract.  

At lift-off, launch vehicles are subject to a very severe overpressure, which can induce loads acting on payloads in 

the low frequency domain. The overpressure starts at ignition of solid rocket motors. For a numerical prediction 

of the overpressure environment, AIRBUS Group Defence & Space has developed an inverse method via a Time 

Domain Boundary Integral Equations approach using an optimal control method, with direct and adjoint equations 

and Quasi Newton optimizer. The corresponding discrete schemes are highly accurate and unconditionally stable. 

As an industrial application, the identification of overpressure sources is shown, on the lift-off acoustic 

environment of ARIANE V. 

Introduction 

During the lift-off phase, the launch vehicles, such as the ARIANE 5 launcher, are subject to severe loads: the 

overpressure loads, which appear at ignition of solid rocket motors. The overpressure loads are among the most 

severe loads that a launcher can encounter during flight. The initial cause of the overpressure is the rocket-

exhausts and their interactions with the launch pad. The overpressure is composed of the Ignition OverPressure 

(IOP), which originates from the launch table, and the Duct OverPressure (DOP), which originates from the 

launch ducts. Figure 1 illustrates this point with a picture of ARIANE 5 launch pad with the ducts. The 

overpressure is a deterministic load having discrete spikes at certain particular frequencies, with significant 

levels for frequencies lower than 40 Hz [1], [2].This low frequency excitation excites the launch vehicle and 

induces Quasi Static Loads (QSL) at the payload/launcher interface, which the payload has to endure. 

Consequently, it is important to predict these loads before launches.  

To achieve this goal, an inverse method using an optimal control method (direct and adjoint equations), with a 

Time Domain Boundary Integral Equations approach, has been progressing for several years at Innovation Works, 

in collaboration with Airbus Defence & Space [3]. The corresponding discrete schemes are high accurate quality 

and unconditionally stable. 

Having localized the overpressure sources from ARIANE 5 in-flight measurements, it will be easy to rebuild the 

unsteady pressure field and to estimate the pressure levels at any point of the vehicle for other flights. By 

integrating the unsteady pressures over all surfaces of the launchers, the loads created by the overpressure can be 

estimated. Consequently, the response of the launcher to this load case during the lift-off phase can be analyzed in 

the temporal domain by using any FEM software. 
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Fig 1 :  Ignition  and Duct OverPressure definition 

 

Inverse Source Problem with BEM (Boundary Element Method) in Time domain  

 

 

We wish to identify time domain acoustic source, emitted at point source x0 parameterized by a real function p for 

each sampling time, which will be the control parameter variable used for the optimal control inverse method. 
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We consider the scattering problem of transient acoustic waves in a fluid medium by a submerged rigid object. 

Let i be a three-dimensional object with a regular (without tip) bounded surface  i . 

Let e = R3\i denote the exterior domain occupied by the fluid medium.. We denote by e
diff

O the scattered 

acoustic pressure created in the fluid medium by an incident field )( pOinc
(the wave propagating without the 

obstacle), which is the contribution of a time domain point source. 

Therefore, we have the following initial boundary value problem: 
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where n denotes the unit normal vector to , oriented from domain I to  e,. c is the speed of sound in the 

medium. We associate to the exterior problem an appropriate interior problem with i
diff

O in I . It is well-known 

that the scattered field e
diff

O has the following representation formula, using the Near Field Scattered operator Q :  
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where:  e
diff

Oi
diff

OU    is the jump 
e

diffO crossing , and   -|x-y| is the  retarded time. Using formula to 

compute the traces of 
e

diffO  xR+, as a function of U, and introducing the boundary conditions, one obtains the 

Boundary Integral Equation for the unknown function U : 
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with the surface operator R, a Double layer Integral Operator coming from the variationnal formulation with 

function U  in H2(R+,H1/2()), such that, for all  in the same space: 
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The equation is solved in space by a P1 surface finite element method. The boundary  of the object is meshed 

with triangular elements.  

 

Finally, the direct problem consists in two main steps: 

1) Computation of the pressure jump U by the Integral Equation operator R, and the excitation S 

2) The radiating post-treatment equation to compute the acoustic pressure O by the scattered operator Q added 

with the Oinc incident field contribution : 
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The quadratic error or cost function j(p), depending on the source parameters p, is defined by  
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Then after some derivations, we obtain  

 

 The Adjoint Equations 
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 The Gradients Formula for multiparameter p 
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The expression of the gradients is now completely established. Starting with an initial guess for the estimated 

parameter p0, a Quasi-Newton optimizer is used to update the parameter value p and to find the optimal popt 

which causes the gradients to vanish. 
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Some recent progresses :  

 

 We can reduce the computation times by decomposing the sources parameters vector into a base of 

unitary sources (multilinear process): the time computation is then reduced by a factor 10. 

 We have completed the identification of sources by optimizing on p and p (differences of pressures 

between opposite points; (The launcher is excited by the differences of pressures in the low frequency 

domain), 

 We have introduced physical sources constraints in  the optimization process 

 

Numerical Results 

 

For identifying the overpressure sources, the flight of concern is the 511 ARIANE 5 flight. Indeed, pressure 

measurements have been mounted on the lower (9 available measurements) and on the upper part of the launcher 

(4 available measurements).  

The locations of sources are defined a priori from previous experience. 10 sources have been identified:  

 one per EAP solid rocket booster and its image with regards to the mast, which was not modelled,  

 one per solid rocket booster at launch duct exit and its image with regards to the mast, 

 one source for the Vulcain engine. 

After identification of the overpressure source locations, a direct problem is solved to compute simulated pressure 

levels and compare them with the real measured values on the same sensors. The comparisons were made on the 

pressures and the differences of pressure measured at diametrically opposite points. Indeed, this quantity is the 

adequate parameter for the calculations of low frequency dynamic response of the launch vehicle. 
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Fig 2 :   Comparison of the measured and computed data (Sensor 10, Fairing) 
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Fig 3 :   Comparison of the measured and computed differences of pressure data (Sensor 10, 12 

Fairing) 

 

Good correlations are observed between the measured and calculated pressures. Also, the comparisons on the 

rebuilt and measured diametrically opposite pressures are good. 

A deep robustness analysis of the method has then been performed, as follows,  

 

 A calculation of the field of pressures on a number of necessary points was achieved, in order to check the 

physical character of the calculated pressures, 
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 The study of the robustness of the method with regards to the number of measurements, 

 The comparison between the measured propulsion parameters and the evolution of the identified sources 

versus time, to check the physical meaning of the identified sources. 

Summar, 

 

A robust and accurate time domain integral equation for wave propagation was developed.  The time marching 

scheme for the direct acoustic source problem is unconditionally stable (no CFL conditions). This allows a 

classical optimization approach for the inverse problem. 

Direct and adjoint codes have exactly the same properties. Prior knowledge of the localization of sources and 

power parallel computers allow the industrial application of such an inverse problem. 

We demonstrate the interest of the method on some examples of source reconstructions in low frequency 

acoustics for the ARIANE 5 overpressure source identification on the data from 511 ARIANE 5 flight: initial 

results are very promising and show a good identification of the multiparameter sources in the 0- 40 Hz frequency 

domain  

For future launches from the same launch pad, that the one used for the identification, and having the same 

characteristics in terms of propulsion, the complete pressure field in the time domain can be estimated. 

The dynamic response of the launcher will be investigated. This approach is now used in industrial activities. 
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2.7 Inverse problems: Identification and stability (IS)

Minisymposium organized by Slim Chaabane





Pointwise inequalities of Logarithmic type in Hardy-Hölder
spaces

Slim Chaabane∗ Imed Feki†

Abstract: We prove some optimal logarithmic estimates in the Hardy space H∞(G) with
Hölder regularity, where G is the open unit disk or an annular domain of C. These estimates
extend the results of [1, 3] established in the case of the Hardy-Sobolev space Hk,∞. The proofs
are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. We apply
those results to establish stability properties for inverse problem of identifying Robin’s coefficients
in corrosion detection by electrostatic boundary measurements.

Keyworlds: Hardy-Hölder space; Hardy-Landau-Little-wood inequality; Inverse problem

1 Optimal logarithmic estimates in Hardy-Hölder spaces
Let D be the open unit disk of C with boundary T and let H∞(D) the space of bounded analytic
functions on D. For s ∈]0, 1[, we denote by Gs = D\sD the annulus of inner boundary sT and
outer boundary T and by H∞(Gs) the Hardy space of bounded analytic functions on Gs.

In the sequel, we denote by G the open unit disk D or the annulus Gs; s ∈]0, 1[.
For k ∈ N and α ∈]0, 1[, we designate by Hk,∞(G) the Hardy-Sobolev space of G:

Hk,∞(G) = {f ∈ H∞(G), f (j) ∈ H∞(G), j = 0, ..., k},
where f (j) denote the jth complex derivative of f ,
and by Hk,α(G) the Hölder-Hardy space:

Hk,α(G) =

{
g ∈ Hk,∞(G); sup

z1 6=z2∈G

|g(k)(z1)− g(k)(z2)|
|z1 − z2|α

<∞
}
,

We endow Hk,∞(G) with the usual norm:

||f ||Hk,∞ = max
0≤j≤k

(
||f (j)||L∞(∂G)

)
.

Let Bk,α(G) denotes the unit ball of Hk,α(G):

Bk,α(G) =
{
g ∈ Hk,α(G), such that [g]k,α ≤ 1

}
,

where [g]k,α is the kth Hölder quotient defined by

[g]k,α = sup
z1 6=z2∈G

|g(k)(z1)− g(k)(z2)|
|z1 − z2|α

.

For any connected subset I of ∂G with length 2πλ;λ ∈ ]0, 1[, the L1 norm of f on I is given by:

||f ||L1(I) =
1

2πλ

∫

I

|f(reiθ)|dθ, where r = s if I ⊂ sT and r = 1 if I ⊂ T.

We present in this work the following main result:
∗Faculty of Sciences of Sfax- LAMHA Laboratory. slim.chaabane@fsm.rnu.tn,
†Faculty of Sciences of Sfax- LAMHA Laboratory. imed.feki@fss.rnu.tn
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Theorem 1.1. Let k ∈ N and I a subarc of ∂G of length 2πλ;λ ∈]0, 1[. There exists two non
negative constants C and γ, depending only on k, α, s and λ, such that for every f ∈ Bk,α(G)
satisfying ||f ||L1(I) < γ, we have

‖f‖L∞(∂G) ≤
C

| log ‖f‖L1(I)|α+k
. (1)

Furthermore, for I = {eiθ,−π2 ≤ θ ≤ π
2 }, there exists a sequence gn ∈ Bk,α(G) such that:

lim
n→+∞

‖gn‖L∞(∂G)

∣∣log ‖gn‖L1(I)

∣∣α+k ≥ (log 2)
α+k

21−α
. (2)

2 Application
As application, we apply our results to obtain logarithmic stability estimates for an inverse problem
of identifying Robin’s coefficients by boundary measurements. Let consider a prescribed flux φ
together with measurement f on a subarc I of the unit circle T, the inverse problem considered is
to recover a function q on J = T \ I such that the solution u of

(RP )




−∆u = 0 in D,
∂nu = φ on I,
∂nu+ qu = 0 on T \ I,

also satisfies u|I = f.
Let c, c′ > 0 and K be a non-empty connected subset of J , for which the boundary does not
intersect that of I. We suppose that q belongs to the class of admissible Robin coefficients:

Qad = {q ∈ C10(J), |q(k)| ≤ c′, 0 ≤ k ≤ 2, and q ≥ cχK},
where C10 is the set of differentiable functions, that vanish on the boundary as well as their first
derivatives. Let W 1,2

0 (I) denote the closure of C10(I) in W 1,2(I).

As an application of Theorem 1.1, we establish the following stability result:

Theorem 2.1. Let φ ∈W 1,2
0 (I) be a positive function which is not identically trivial. There exists

then, a non negative constant C such that for any q1, q2 ∈ Qad, we have:

‖q1 − q2‖L∞(J) ≤
C

∣∣log
(
‖u1 − u2‖L1(I)

)∣∣1/2 ,

provided that ‖u1 − u2‖L1(I) < 1, where ui denotes the solution of (RP ) with q = qi; i = 1, 2.

Note that this result improves upon [2, Corollary 1] where the authors supposed that φ ∈
W 2,2

0 (I). We note also that an 1/ log-type estimate has been proved in [4, Theorem 4.3].
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Quelques estimations logarithmiques optimales dans les
espaces de Hardy-Sobolev

Imed Feki ∗ Houda Nfata † Franck Wielonsky ‡

Résumé : On démontre dans ce travail des estimations optimales de type 1/ logk dans les es-
paces de Hardy-Sobolev Hk,2; k ∈ N∗, du disque unité D améliorant ainsi les résultats établis par
L. Baratchart et M. Zerner [2] et généralisant les travaux effectués dans le cas uniforme par S.
Chaabane et I. Feki [3]. On généralise ensuite ces estimations au cas des espaces de Hardy-Sobolev
H1,p, p ∈ [1,∞]. Un contre-exemple est aussi élaboré pour montrer que ces dernières estimations
sont optimales.
Mots clés : Espace de Hardy-Sobolev, inégualité de Hardy-Landau-Littlewood, estimation loga-
rithmique, stabilité, problème inverse.

1 Introduction
On établit dans ce travail des estimations logarithmiques dans les espaces de Hardy-Sobolev du
disque unité D améliorant ainsi les résultats de [2] et généralisant les travaux de [3].
Pour tout p ∈ [1,+∞], r ∈ ]0, 1[ et f une fonction analytique dans D, on note par :

Mp(f, r) =

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
) 1

p

si p < +∞ et M∞(f, r) = max
|z|=1

|f(z)|

On désigne par Hp l’espace de Hardy des fonctions f analytiques dans D ayant une moyenne
Mp(f, r) bornée sur les cercles de rayons r ∈ ]0, 1[ que l’on munit de la norme suivante :

||f ||p = lim
r→1−

Mp(f, r).

Pour k ∈ N∗, on désigne par Hk,p l’espace de Hardy-Sobolev du disque unité D :

Hk,p = {f ∈ Hp; f (j) ∈ Hp, 1 ≤ j ≤ k}
que l’on munit de la norme :

‖f‖p
Hk,p =

k∑

j=0

‖f (j)‖pp si 1 ≤ p <∞ et ‖f‖∞ = max
0≤j≤k

(‖f (j)‖L∞(T)).

Pour 1 ≤ p <∞ et I un sous arc de T de longueur 2πλ, λ ∈ ]0, 1[, on désigne par

‖f‖p,I =

(
1

2πλ

∫

I

|f(eiθ)|p dθ
) 1

p

,

la norme Lp de la fonction f sur I.
On note par Bk,p la boule unité de l’espace de Hardy-Sobolev Hk,p :

Bk,p = {f ∈ Hk,p ; ‖f‖Hk,p ≤ 1}.
Ce travail comporte deux parties.
∗FSS–LAMHA, Imed.Feki@fss.rnu.tn,
†FSS–LAMHA, nfata.houda@yahoo.fr,
‡CMI–LATP, wielonsk@cmi.univ–mrs.fr
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• On établit dans la première partie des estimations optimales de type logarithmique dans
les espaces de Hardy-Sobolev Hk,2 permettant de contrôler en norme L2 le comportement
d’une fonction f dans la boue unité Bk,2 à partir de son comportement en norme L2 sur un
sous-arc I de T.
• Dans la deuxième partie, on généralise ces estimations de type logarithmique dans les espaces
de Hardy-Sobolev H1,p, 1 ≤ p ≤ ∞.

2 Estimations dans les espaces de Hardy-Sobolev Hk,2

On démontre dans le théorème suivant une estimation logarithmique optimale dans les espaces de
Hardy-Sobolev Hk,2 du disque, k ∈ N∗.
Théorème 2.1. Soit k ≥ 1. Alors, il existe deux constantes positives αk et γk, dépendant uni-
quement de k, tels que pour tout f ∈ Bk,2 vérifiant ‖f‖2,I ≤ e−γk/λ, I étant un sous arc de T de
longeur 2πλ, on a :

‖f‖2 ≤
αk

|λ log ‖f‖2,I |k
. (1)

De plus, pour I = {eiθ,−π/2 ≤ θ ≤ π/2} il existe une suite de polynômes

fn = un/‖un‖Hk,2 , un(z) = (z − a)n, n > 0, a > 1.

telle que la norme ‖fn‖2,I tend vers 0 lorsque n tend vers l’infini avec

0 < βk,a := lim
n→∞

‖fn‖2| log ‖fn‖2,I |k, lim
a→+∞

βk,a = 1. (2)

Remarque Il résulte de (2) que l’estimation (1) du Théorème 2.1 est optimale : Il est impossible
de remplacer la constante αk par une fonction de la norme ‖f‖2,I qui tend vers 0 en 0 telle que
pour tout f ∈ Bk,2, on a :

‖f‖2| log(‖f‖2,I)|k ≤ ε(‖f‖2,I).

3 Estimations dans les espaces de Hardy-Sobolev H1,p

On démontre dans le théorème suivant une estimation logarithmique optimale dans les espaces de
Hardy-Sobolev H1,p du disque, 1 ≤ p ≤ ∞.

Théorème 3.1. Il existe deux constantes positives α et Γ, dépendant uniquement de 1 ≤ p ≤ ∞,
tels que pour tout f ∈ B1,p vérifiant ‖f‖1,I ≤ e−Γ, I est un sous arc de T de longueur 2πλ, on a :

‖f‖p ≤
α

|λ log(‖f‖1,I)|
. (3)

De plus, pour I = {eiθ, π
2 ≤ θ ≤ 3π

2 } il existe une suite de fonctions fn ∈ B1,p telle que la norme
‖fn‖1,I tend vers 0 lorsque n tend vers l’infini avec

lim
n→+∞

‖fn‖p |log ‖fn‖1,I | ≥
log 5

2
. (4)
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Plasma equilibrium reconstruction in a Tokamak using

topological gradient method

Maatoug Hassine∗ Mohamed Jaoua† Souhila Sabit‡

Abstract: The Tokamak is an experimental machine which aims to con�ne the plasma in a
magnetic �eld to control the nuclear fusion of atoms of mass law. The real-time reconstruction of
the plasma magnetic equilibrium in a Tokamak is a key point to access high performance regimes.

In an axisymmetric con�guration, the plasma equilibrium is described by the equation (see [2])

Lψ = 0 in Ωv

where Ωv = Ω\Ωp is the vacuum region surrounding the plasma domain Ωp, Ω is the vacuum
vessel, and L is the Grad-Shafranov operator

L = − ∂

∂r
(
1

r

∂

∂r
)− ∂

∂z
(
1

r

∂

∂z
)

Due to its economic importance, the plasma control problem has long been receiving considerable
attention by engineers and mathematicians[2,3]. Therefore, the most developed methods deal with
control theory or parametric optimization.

Figure 1: Tokamak

In this work, we propose a new method. Our approach is based on the topological sensitivity
analysis[1,4]. The plasma domain de�ned by a level curve of a scalar function, called the topological
gradient. The topological gradient is calculated from a topological asymptotic expansion for
the Grad-Shafranov operator. The proposed approach leads to a fast and accurate numerical
algorithm. The e�ciency of the proposed method is illustrated by some numerical examples.
Keyworlds: Inverse problem, topological gradient, topological sensitivity, plasma reconstruction.
∗FSM�lamsin, maatoug.hassine@enit.rnu.tn,
†Université Francaise d'Egypte, mb.jaoua@gmail.com
‡INRIA Rennes, France, souhila.sabit@inria.fr
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1 The inverse problem

We consider here the inverse problem of determining plasma boundary Γp location from over-
speci�ed boundary data on Γ = ∂Ωv. Knowing a complete set of Cauchy data, the poloidal �ux
ψ satis�es the system 




Lψ = 0 in Ωv,
1

r

∂ψ

∂n
= ϕN on Γ,

ψ = ϕD on Γ,
ψ = 0 on Γp.

(1)

In this formulation the domain Ωv is unknown since the free plasma boundary ΓP is unknown.
This problem is ill posed in the sense of Hadamard.

The considered inverse problem can be formulated as follows: given boundary data ϕN and
ϕD, �nd the optimal location of the plasma boundary ΓP minimizing the cost function

J(ψN , ψD) :=

∫

Ωv

|ψN − ψD|2 (2)

where ψN and ψD are the solutions to the following systems




LψN = 0 in Ωv,
1

r

∂ψN

∂n
= ϕN on Γ,

ψN = 0 on Γp,





LψD = 0 in Ωv,
ψD = ϕD on Γ,

ψD = 0 on Γp.

(3)

2 Topological sensitivity analysis

The topological sensitivity analysis method consists in studying the variation of a cost function
j(Ω) with respect to the insertion of small hole ωρ = X0 + ρω in the domain Ω, where X0 =
(x0, y0) ∈ Ω, ρ > 0 and ω ⊂ IR2 is a �xed bounded domain containing the origin, whose boundary
is connected and piecewise of class C1.

The topological gradient method leads to an asymptotic expansion of the form

j(Ω\ωρ) = j(Ω) + f(ρ) g(X0) + o(f(ρ)),

where f is a scalar positive function going to zero with ρ. The function g is called the topological
gradient.

In order to minimise j, the best location to insert a small hole ωρ in the domain Ω is where g
is negative. In fact if g(X0) < 0, we have j(Ω\ωρ) < j(Ω).

In this section we give a topological asymptotic expansion for the Grad-Shafranov operator.
The following Theorem describes the variation of the function j when creating a small hole ωρ
inside the domain Ω with a Dirichlet boundary condition on ∂ωρ.

For all ρ ≥ 0, j(Ω\ωρ) =

∫

Ω\ωρ
|ψNρ − ψDρ |2,

where ψNρ and ψDρ are the solutions to the systems




LψNρ = 0 in Ω\ωρ,
1

r

∂ψNρ
∂n

= ϕN on Γ,

ψNρ = 0 on ∂ωρ,





LψDρ = 0 in Ω\ωρ,
ψDρ = ϕD on Γ,

ψDρ = 0 on ∂ωρ.

Theorem: The function j admits the following asymptotic expansion
j(Ω\ωρ) = j(Ω)− 1

log(ρ)
g(X0) + o(− 1

log(ρ)
)

where g(X) =
2π

x
(ψN0 (X)φN0 (X) + ψD0 (X)φD0 (X)), X ∈ Ω. Here φN0 and φD0 are the solutions to

the associated adjoint problems.
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Figure 2: Isovalues(left) and 3D view (right) of the topological gradient g.

Figure 3: The exact (ellipse Ωexp = B(Z0, r1, r2)) and the obtained (red zone) plasma domain.

3 Numerical experiments

We propose a fast and e�cient identi�cation procedure. Our numerical algorithm is based on the
asymptotic expansion established in the previous Theorem. The unknown plasma boundary is
de�ned by level set curve of the topological gradient g(X) de�ned for all X = (x, y) ∈ Ω. Our
identi�cation procedure is a one-shot algorithm based on the following steps:
− solve the direct and adjoint problems,
− compute the topological gradient g,
− determine the plasma domain Ωp = {X ∈ Ω; g(X) ≤ c < 0}, where c is chosen in such a

way that the function j decreases as much as possible.
We present here the numerical results for one example using the following data:
− the vacuum vessel region is de�ned by the disc Ω = B(Z0, 1), with Z0 = (2, 0).
− the exact plasma domain is de�ned by the ellipse Ωexp = B(Z0, r1, r2), with r1 = 0.4 and
r2 = 0.5.
The obtained numerical results are described in Figures 2 and 3. One can note that the zone
where the topological gradient g is negative (the red region) nearly coincides with the exact
plasma domain Ωexp (see Fig.3).

The numerical procedure is very fast, accurate and can be extended to real practical situations
implying real measerements.
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Reconstruction of multiple cracks using a self regularizing
approach

S. Chaabane∗ M. Jaoua† A. Jaour

Abstract: We present in this paper a self regularizing approach to determine an unknown
crack (s) in a bi-dimensional domain Ω using boundary measurements. We develop an identifica-
tion algorithm based on the Kozlov method and we present some numerical results obtained by
using this algorithm.

Keyworlds: Identification, cracks, Kozlov algorithm

1 The Kozlov algorithm with primitive data
We develop in this paper a new approach based on the Kozlov algorithm to determine an unknown
linear crack (s) in a domain Ω of R2 with a smooth boundary Γ. If σ is a linear crack (s) of Ω, we
denote by uσ the solution of the following direct problem:

(P)





−∆uσ = 0 in Ω \ σ,
∂nuσ = ϕ sur Γ,
∂nuσ = 0 sur σ,∫
Γ

uσ = 0.

where ϕ ∈ L2(T) denotes the current flux such that: ϕ ̸≡ 0 and
∫

T ϕ = 0.

1.1 Identification of linear crack (s) using the Kozlov algorithm
In this part, we describe the method presented by Azaeiz et al [2] to solve the inverse problem
of determining an unknown linear crack (s) σu in Ω by using the Kozlov algorithm. Let l be
the support line of σu which divides Ω into two sub-domains Ω1 and Ω2, and let us denote by
Γi = Γ∩∂Ωi, i = 1, 2. The method consists to solve on each sub-domain Ωi the Cauchy problem :

(Ci)





−∆ui = 0 in Ωi,
∂nui = ϕ on Γi,
ui = f on Γi,

and to compute the jump [u] = u1 −u2 on the line l. Referring to Andrieux and Ben Abda [1], the
crack (s) σu describe in the case of identifying flux ϕ the subset of l where the jump not vanish:

σu = {x ∈ l such that | [u(x)] | > 0}.

To solve the Cauchy problems (Ci); i = 1, 2, the authors apply the Kozlov algorithm.
∗FSS–lamha, Sfax, Tunisia slim.chaabane@fsm.rnu.tn,
†Université Française d’Egypte, PO Box 21, Shorouq City, Cairo, Egypt, mb.jaoua@gmail.com
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1.2 The Kozlov algorithm with primitive data
By introducing a conformal mapping Ψ transforming the domaine Ω into the unit disk D of R2,
all the results obtained in this section are also valid in the case of C1,α domain Ω of R2; α ∈]0, 1[.
So, with no loss of generality, we can assume in the sequel that the domain Ω is the unit disk D
of R2 and we denote by D1 and D2, the upper and lower half disk of R2:

D1 = {z ∈ D such that Im(z) > 0} ; D2 = {z ∈ D such that Im(z) < 0}

Let u solve the problem (P) with σ = σu. For j = 1, 2, we denote by uj = u|Dj
and by gj = uj+ivj ,

where vj is the harmonic conjugate function associated to uj such that vj(1) = 0. We denote by
Gj the primitive complex of gj in the sub-domaine Dj such that Gj(1) = 0.

Given an identifying flux ϕ, there exists two unique functions g and G analytic on D \ σu and
presenting the same discontinuity domain σu such that g|Dj

= gj and G|Dj
= Gj for j ∈ {1, 2}. In

the sequel, we denote by U the real part of G, F = U|T and Φ = ∂n(U) over T. From the Cauchy
Riemann equations, we have:

F (eiθ) = −sin(θ)

∫ θ

0

ϕ(s)ds+

∫ θ

0

sin(s) [ϕ(s) − f(s)] ds ; Φ(θ) = f(θ)cos(θ)− sin(θ)

∫ θ

0

ϕ(s)ds.

The idea, consists then to applay the method presented in the previous section to the primitive
data (F, Φ). In that case, the two following advantages show up:

• From the classical theory of regularity in PDE and the Privalov theorem, the function gj ∈
C0,β(Dj); β < 1/2 and its primitive Gj belong to the Hardy-Holder space C1,β(Dj). This
gain of regularity stabilizes the problem of data completion in each sub-domain Dj ; j = 1, 2.

• Let (εn)n∈N be a sequence of Lp(T); p ∈ [1,+∞[ such that lim
n→∞

∥εn∥Lp(T) = 0 and fn = f+εn

a sequence of noisy data. In the new approach, the function πn =

∫
εn represents the

perturbation term of F and satisfies: lim
n→∞

∥πn∥W 1,p(T) = 0. Then, the move from Lp

convergence to W 1,p convergence smoothes the data and erases the oscillations resulting
from the noise, which constitutes what has been called a self regularization. The following
numerical tests clearly confirm those observations:

1.3 Numerical results
To illustrate numerically this method, we consider first the case of Ω = D and u = Im(

√
z − a )

as a solution of the problem (P) with an unknown crack σu = [−1, a] × {0}; a ∈] − 1, 1[. Using
the Kozlov algorithm and the new approach, we obtain the following numerical results:
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Figure 1: The graph of u in the left, the graph of [u] and reconstruction of σu in the middle,
reconstruction of σu with 5% of noise in the right (Kozlov algorithm).
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Figure 2: The graph of U in the left, the graph of [U] and reconstruction of σu in the middle,
reconstruction of σu with 5% in the right (The new approach).

For the reconstruction of 2D multiple linear cracks, we obtain by using the Kozlov algorithm
and the new approach the following numerical results.
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Figure 3: The graph of u in the left, the graph of [u] and reconstruction of σu in the middle,
reconstruction of σu with 5% in the right (Kozlov algorithm).
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Figure 4: The graph of U in the left, the graph of [U] and reconstruction of σu in the middle,
reconstruction of σu with 5% of noise in the right (The new approach).
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Energie limite et décroissance de l’Energie dans réseau
dégénéré

Mohamed Jellouli∗

Résumé : Nous présentons dans cet exposé quelques résultats concernant la décroissance de
l’énergie (ou de l’énergie locale selon la situation) d’un système formé de cordes vibrantes à faible
amplitudes. Ce système est décrit par des d’équations d’ondes définies sur un réseau contenant
N branches (N ≥ 3). Plus précisément, nous nous intéressons à deux cas de figures celui d’un
arbre borné et celui d’un arbre contenant une tige de longueur infinie (nous parlerons ici d’énergie
locale).
La stabilisation (même forte) d’un réseau demande une condition nécessaire (et parfois suffisante)
sur la non rationalité des rapports des longueurs de ses cordes (voir par exemple ([1]) et on
distinguera les deux cas : non dégénéré et dégénéré. nous savons que si l’arbre est non dégénéré et
sous la présence d’un feedback linéaire, l’énergie totale décroît vers zéro mais non exponentiellement
(voir les cas [1] et [2]). Notre travail consiste à étudier le comportement de l’énergie E(t) d’un
réseau dégénéré, et pour cet effet nous introduisons des opérateurs (voir [3]) qui permettent de
calculer l’énergie emmagasinée E∞ et de déterminer d’une façon optimale la décroissance de E(t)
vers E∞.
Ces travaux sont en collaboration avec M. Mehrenberger (avec une étude numérique en parallèle)
dans le cas borné et avec R. Assel et M. Khenissi dans le cas contenant une tige de longueur infinie
(en étudiant aussi le problème spectral associé)
Mots clés : Réseau de cordes, décroissance de l’énergie, formule de D’Alembert, opérateur de
type τ

1 Formulation Matématique
Les systèmes d’équations des ondes à faibles amplitudes s’écrivent (en se limitant à un arbre
générique) :
Cas borné

(S1) :





∂2t uj(t, x)− ∂2xuj(t, x) = 0, t > 0, x ∈ (0, `j) et 1 ≤ j ≤ N
uj(t, `j) = 0, t ≥ 0 et 2 ≤ j ≤ N (Dirichlet aux extrémités)
∂xu1(t, 0) = α∂tu1(t, 0), t ≥ 0 (α > 0 dissipation à l’origine)
u1(t, `1) = uj(t, 0), t ≥ 0 et 2 ≤ j ≤ N (continuité au noeud)
∂xu1(t, `1) =

∑N
j=2 ∂xuj(t, 0), t ≥ 0 (Kirchhoff au noeud)

uj(0, x) = aj(x) et ∂tuj(0, x) = bj(x), 2 ≤ j ≤ N et x ∈ [0, `j ] (condition de Cauchy)

où ((aj)1≤j≤N , (bj)1≤j≤N ) ∈ H :=
∏N

j=1H
2(0, `j) ×

∏N
j=1H

1(0, `j), vérifiant les conditions de
compatibilités

{
a′1(0) = αb1(0)

a′1(`1) =
∑N

j=2 a
′
j(0)

et ∀2 ≤ j ≤ N,

{
aj(`j) = 0,
a1(`1) = aj(0).

(1)

On définie l’énergie totale E(t) du système (S1) par,

E(t) =
1

2

N∑

j=1

‖∂tuj(t)‖2L2(0,`j)
+

1

2

N∑

j=1

‖∂xuj(t)‖2L2(0,`j)
. (2)

∗Faculté des sciences de Monastir, mohamed.jellouli@fsm.rnu.tn,
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Cas non borné Dans le cas où l’arbre contient une branche de longueur infinie, nous étudions le
système dissipatif suivant

(S2) :





∂2t uj(t, x)− ∂2xuj(t, x) = 0, t > 0, x ∈ (0, `j) et 1 ≤ j ≤ N
∂2t u∞(t, x)− ∂2xu∞(t, x) = 0, t > 0, x ∈ (0, `∞), `∞ = +∞
uj(t, `j) = 0, t ≥ 0 et j ∈ {1, · · · , N}
uj(t, 0) = u∞(t, 0), t ≥ 0 et 1 ≤ j ≤ N

∂xu∞(t, 0) +
∑N

j=1 ∂xuj(t, 0), t ≥ 0

uj(0, x) = aj(x) et ∂tuj(0, x) = bj(x), j ∈ {1, · · · , N,∞} et x ∈ [0, `j ]

où

((aj)1≤j≤N , a∞, (bj)1≤j≤N , b∞) ∈ H̃ :=
N∏

j=1

H2(0, `j)× Ḣ1 ∩H2(0,+∞)×
N∏

j=1

H1(0, `j)× Ḣ1 (3)

vérifiant les conditions de compatibilités

N∑

j=2

a′j(0) + a′∞(0) = 0 et ∀1 ≤ j ≤ N,

{
aj(`j) = 0,
aj(0) = a∞(0).

(4)

L’énergie locale est définit pour un R > 0 par :

ER(t) =
1
2

(
‖∂tu∞(t)‖2L2(0,R) +

∑N
j=1 ‖∂tuj(t)‖

2
L2(0,`j)

)
+

1
2

(
‖∂xu∞(t)‖2L2(0,R) +

∑N
j=1 ‖∂xuj(t)‖

2
L2(0,`j)

)
.

(5)

Les énergies (2) et (5) vérifient les conditions de dissipations respectives:

E(t) = E(0)− α

∫ t

0

|∂tu1(s, 0)|2 ds (6)

et

ER(t) = ER(0)−
∫ t

0

|∂tu∞(s,R)|2 ds. (7)

2 Résultats
Dans toute la suite, on supposera que toutes les longueurs finies sont égales : `j = `.

Théorème 1 Si ((aj)1≤j≤N , (bj)1≤j≤N ) ∈ H vérifiant (1), alors l’énergie limite de la solution du
système (S1) est donnée par

E∞ =
1

2(N − 1)

N∑

j=2

N∑

k=j+1

(∥∥(a′k − a′j)
∥∥2
L2(0,`)

+
∥∥(bk − bj)

∥∥2
L2(0,`)

)
. (8)

Le théorème suivant exprime la nature de la décroissance de E(t) vers E∞.

On note α0 = 2
√
N−1
N , ∆ = 4(α2N2−4N+4)

(α+1)2 et λ = −
2(N−2)

α+1 +
√
∆

2N . 12

Théorème 2 Il existe une constante C = CN (α) > 0 telle que pour toute donnée ((aj)1≤j≤N , (bj)1≤j≤N ) ∈
H vérifiant (1),

E(t)− E∞ ≤ C

(
‖a1‖21+‖b1‖2+

∥∥∥∥
N∑

j=2

aj

∥∥∥∥
2

1

+

∥∥∥∥
N∑

j=2

bj

∥∥∥∥
2)

e−γt

|∆| , if α 6= α0 (9)

1
√
∆ = i

√
−∆ si ∆ < 0

2Notons que ∆ < 0 (resp. ∆ = 0) si et seulement si α ∈]0, α0[ (resp. α = α0)
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et

E(t)− E∞ ≤ C

(
‖a1‖21+‖b1‖2+

∥∥∥∥
N∑

j=2

aj

∥∥∥∥
2

1

+

∥∥∥∥
N∑

j=2

bj

∥∥∥∥
2)
t2e−γ0t, if α = α0 (10)

où γ = 1
` log

1
|λ| > 0 et γ0 = 1

` log
N+2

√
N−1

N−2 .

Consernant le système (S2), on considère des données initiales dans H̃ vérifiant les conditions (4).
On note

h =
N∑

j=1

(
L+a′j + L−bj

)
et h∞ = a′∞ + b∞.

Théorème 3 Soient R = 2l et u la solution de (S2) alors

lim
t→+∞

ER(t) = ER(∞) =
1

2N

∑

1≤i<j≤N

(∥∥a′i − a′j
∥∥2
L2(0,l)

+ ‖bi − bj‖2L2(0,l)

)
,

et pour tout t ≥ 2R, on a

C1

∥∥∥∥
N − 1

2N
h+ h∞

∥∥∥∥
2

L2(0,2l)

e−γt ≤ ER(t)− ER(∞) ≤ C2

∥∥∥∥
N − 1

2N
h+ h∞

∥∥∥∥
2

L2(0,2l)

e−γt

où C1 = N
(N−1)2 , C2 = N(N+1)4

(N−1)6 et γ =
1

l
ln

(
N + 1

N − 1

)
.

La preuve de ces théorèmes utilisent les opérateurs de type τ dont le définition est (voir [2] et
[3])

Définition 1 Soient m = (m(j))j≥1 une suite réelle strictement croissante tendant vers +∞ avec
m(1) = 0 et γ = (γ(j))j≥1 une suite complexe, on appelle opérateur de type τ associé à ces deux
suites, l’opérateur qui à une fonction causale f associe la fonction

Pf(t) =
q∑

j=1

γ(j)f(t−m(j)) , q ≥ 1 et t ∈]m(q),m(q + 1)[.

L’intérêt principal de ces opérateurs, c’est qu’ils permettent d’exprimer suite à des opérations
algébriques, les traces ∂tu1(t, 0) et ∂tu∞(t, R) (qui appraissent dans (6) et (7)) à l’aide des données
initiales du problème correspondant.
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Stability estimates for the Calderón problem with partial

data

Dos Santos Ferreira
∗

Abstract

This work is a follow up of a previous one where we proved local stability estimates for a potential in

a Schrödinger equation on an open bounded set in dimension n = 3 from the Dirichlet-to-Neumann

map with partial data. The region under control was the penumbra delimited by a source of light

outside of the convex hull of the open set. These local estimates provided stability of log-log type

corresponding to the uniqueness results in Calderón's inverse problem with partial data proved by

Kenig, Sjöstrand and Uhlmann and relied on a quantitative version of the micro local version of

Helgason's support theorem based on Kashiwara's Watermelon theorem. In this work, we prove

the corresponding global estimates in all dimensions higher than three. The estimates are based on

the construction of solutions of the Schrödinger equation by complex geometrical optics developed

in the anisotropic setting by Dos Santos Ferreira, Kenig, Salo and Uhlmann to solve the Calderón

problem in certain admissible geometries and relies on known stability estimates of the geodesic

ray transform on caps of the hypersphere. This is a joint work with Pedro Caro and Alberto Ruiz.
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WELL-POSEDNESS AND ASYMPTOTIC STABILITY FOR THE LAMÉ

SYSTEM WITH INFINITE MEMORIES IN BOUNDED DOMAIN

AHMED BCHATNIA∗ AND AISSA GUESMIA∗∗

Abstract. In this work, we consider the Lamé system in 3-dimension bounded domain
with infinite memories. We prove, under some appropriate assumptions, that this system is
well posed and still stable, and we get a general and precise estimate on the convergence of
solutions to zero at infinity in term of the growth of the infinite memories.

Let Ω be a bounded domain in R3 with smooth boundary ∂Ω. Let us consider the following
Lamé system with infinite memories:




u′′ −∆eu+

∫ +∞

0
g(s)∆u(t− s)ds = 0, in Ω× R+,

u = 0, on ∂Ω× R+

(0.1)

with initial conditions{
u (x,−t) = u0(x, t), in Ω× R+,
u′(x, 0) = u1(x), in Ω,

(0.2)

where ′ = ∂
∂t , u0 and u1 are given history and initial data. Here ∆e denotes the elasticity

operator defined by

∆eu = µ∆u+ (λ+ µ)∇÷ u, u = (u1, u2, u3)T

and λ and µ are the Lamé constants which satisfy the conditions

µ > 0, λ+ µ ≥ 0. (0.3)

Moreover,

g (s) =




g1 (s) 0 0
0 g2 (s) 0
0 0 g3 (s)


 ,

where gi : R+ → R+ are given functions, which represent the terms of dissipation.
Our aim in this work is to prove that the stability and/or bounded of our system holds

with infinite memories and getting a general decay connection (exponential or polynomial or
others) between the decay rates of the solutions and the growth of the memory functions.
Now, we give our main stability results.

Theorem 1. Assume that (0.3) and (H1)-(H3) are satisfied such that (??) holds or there
exists a positive constant mi satisfying∫

Ω

∣∣∇ηi0
∣∣2 dx ≤ mi, ∀s ∈ R+. (0.4)

Date: December 1, 2013.
1991 Mathematics Subject Classification. 35B37, 35B40, 35L55.
Key words and phrases. Well-posedness; General decay; Asymptotic behavior; Infinite memory; Lamé

system; Semigroup theory; Energy method.
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Then there exist positive constants c′, c′′ and ε0 for which E satisfies

E(t) ≤ c′′e−c′t, ∀t ∈ R+ (0.5)

if (??) is satisfied, for any i = 1, 2, 3, and

E(t) ≤ c′′G−1
1 (c′t), ∀t ∈ R+ (0.6)

otherwise, where

G1(s) =

∫ 1

s

1

τG′(ε0τ)
dτ (s ∈]0, 1]). (0.7)
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NONLINEAR CONTROL FOR THE
RADIATIVE-CONDUCTIVE HEAT TRANSFERT

SYSTEMS

Mohamed Ghattassi∗ Mohamed Boutayeb† Jean Rodolphe Roche‡

Abstract: This contribution concerns the problem of finite dimensional control for a class of
systems described by nonlinear hyperbolic-parabolic coupled partial differential equations (PDE’s).
Initially, Galerkin’s method is applied to the PDE system to derive a nonlinear ordinary differen-
tial equation (ODE) system that accurately describes the dynamics of the dominant (slow) modes
of the PDE system. After, we introduce a useful nonlinear controller to assure stabilization under
convex sufficient conditions.

Keywords: Nonlinear control, Radiative transfer equation, Nonlinear heat equation, Galerkin
method, Linear Matrix Inequalities (LMIs).

1 Introduction
A large number of industrially important transport-reaction processes are inherently nonlinear and
are characterized by significant spatial variations because of the underlying diffusion and convec-
tion phenomena. Representative examples include rapid thermal processing, plasma reactors, and
crystal growth processes, to name a few. The mathematical models which describe the spatiotem-
poral behavior of these processes are typically obtained from the dynamic conservation equations
and consist of systems of parabolic and hyperbolic partial differential equations (PDEs). The main
feature of parabolic PDE systems is that the eigenspectrum of the spatial differential operator can
be partitioned into a finite-dimensional slow one and an infinite-dimensional stable fast comple-
ment [1]. Motivated by this fact, a typical approach to the control design of linear or semilinear
parabolic PDE systems is to obtain an approximate ordinary differential equation (ODE) represen-
tation of the original PDE system by utilizing the spatial discretization techniques, which is then
used for controller design purposes by applying different existing ODE-based linear or nonlinear
control techniques. The standard Galerkin method was used to derive a finite-dimensional ODE
model.

In this note, we construct a boundary controller to establish the stability of the coupled
radiative-conductive heat transfer systems in the finite dimensional. Through Lyapunov anal-
ysis we established sufficient conditions for stability by the feasibility of the finite-dimensional
Linear Matrix Inequalities(LMI)[4, 3].

2 The feedback control problem
Let D =

{
β ∈ R2 : |β| 6 1

}
the unit disk, Ω a bounded domain in R2 and t ∈ [0, τ ], for τ > 0.

Let n be the outward unit normal to the boundary ∂Ω. We denote

∂Ω− = {(s, β) ∈ ∂Ω×D such that β.n < 0} (1)
∗UL–IECL, mohamed.ghattassi@univ-lorraine.fr,
†UL–CRAN, mohamed.boutayeb@univ-lorraine.fr,
‡UL–IECL, jean-rodolphe.roche@univ-lorraine.fr
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The unknown of the RTE is the radiation intensity denoted I(t, s, β) given at time t, position s
and in the direction β. The unknown of the nonlinear heat equation is the temperature T (t, s) at
time t and position s. The RTE is given by (see,[2])

β.∇sI(t, s, β) + κI(t, s, β) = κIb(T (t, s)) for (t, s, β) ∈ [0, τ ]× Ω×D (2a)
I(t, s, β) = Ib(T (t, s)) for (t, s, β) ∈ [0, τ ]× ∂Ω− (2b)

where κ is the absorption coefficient of the medium and Ib(T ) is the radiation intensity of the
blackbody with, T , the temperature of the medium:

Ib(T ) =
σB
π
T 4 (3)

where σB = 5.6698× 10−8 Wm−2K−4 is the Stefan-Boltzmann constant.
Emission and absorption of radiation by the medium lead to a radiative source term in the

energy equation function of Ib(T ) and the incident radiation intensity G defined by:

G(t, s) =

∫

D
I(t, s, β) dβ for (t, s) ∈ [0, τ ]× Ω. (4)

The radiative transfer equation is strongly coupled by the incident radiation intensity G and the
temperature T with the following nonlinear heat equation:

ρcp
∂T
∂t (t, s)− kc4T (t, s) = Ψ(T (t, s)) (t, s) ∈ [0, τ ]× Ω (5)

where Ψ is a nonlinear function defined by Ψ = 4κG − 4κσBT
4. The equation (5) is associated

with Dirichlet boundary conditions and the initial condition T (0, s) = T0(s) s ∈ Ω. The data ρ,
cp, and kc are the density, the specific heat capacity, and the thermal conductivity of the medium,
respectively.

In this work, we explore the Discontinuous and Continuous Galerkin method’s to approxi-
mate the radiative transfer equation and the nonlinear heat equation, respectively. The Galerkin
approximation for the nonlinear heat equation (5) has the following form

MhṪh = AhTh + BhUh + Ψh(Th), (6)

where Mh,Ah ∈ MN (R) and Bh ∈ MN,n(R) are the matrices of the Galerkin approximation
method. Mh is a symmetric positive definite matrix and Ah is a negative definite matrix. Ψh(Th) ∈
RN is approximation of the nonlinear function Ψ(T ). Uh ∈ Rn is the input vector of boundary
control.

We consider the following nonlinear control:

Uh = −K1Th −K2Ψh(Th), (7)

where K1 and K2 are the control gain matrices. Using the Linear Matrix Inequality (LMI), we
establish a convex sufficient conditions, such that a nonlinear control (7) guarantee the stabilization
of the nonlinear systems.
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Variational formulations for the numerical resolution of

control and inverse problems for the heat equation

Arnaud Munch
∗

Abstract

We address in this talk the numerical resolution of controllability problems as well as inverse
problems for the heat equation posed in bounded domain. Due to the intrinsic strong regularization
property of the heat operator, such kind of problems are generally ill-posed numerically. We present
space-time variational formulations which allow to solve directly the optimality conditions related
to some quadratic functionals usually introduced in control or inverse problem theory (for instance,
least-squares type functional). In particular, such direct approach avoid in particular the use of
iterative minimization process which may fail to converge numerically. The well-posedeness of
such formulation as well as the numerical approximations are discussed.

∗Université Blaise Pascal (Clermont-Ferrand, France)
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Optimal observation of parabolic equations

Yannick Privat
∗

Abstract

In this talk, we consider parabolic equations on a bounded open connected subset of Rn. We model

and investigate the problem of optimal shape and location of the observation domain having a

prescribed measure. We show that it is relevant to consider a spectral optimal design problem

corresponding to an average of the classical observability inequality over random initial data. We

prove that, under appropriate su�cient spectral assumptions, this optimal design problem has a

unique solution, depending only on a �nite number of modes, and that the optimal domain is

semi-analytic and thus has a �nite number of connected components. Our results cover the case

of the Stokes equations.

∗CNRS (Paris, France)
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Parareal in time intermediate targets methods for optimal

control problem

Mohamed Kamel Riahi
∗

Abstract

We present a time parallel method to solve the Euler-Lagrange system associated with the optimal

control of a parabolic equation. Our approach, which gives rise to independent sub-problems, is

based on both the de�nition and the iterative update of a sequences of intermediate targets and

initial conditions. In order to accelerate the timeresolution, this method is coupled with the

parareal in time algorithm. Numerical experiments show the e�ciency of the methods.

∗INRIA-Saclay, France
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Ill-Conditioning versus Ill-Posedness for the boundary

Controllability of the Heat Equation

Sidi-Mahmoud Kaber
∗

Abstract

Ill-posedness and/or Ill-conditioning are features users have to deal with appropriately in the
controllability of di�usion problems for secure and reliable outputs. We investigate those issues in
the case of a boundary Dirichlet control, in an attempt to underline the origin of the troubles arising
in the numerical computations and to shed some light on the di�culties to obtain good quality
simulations. The exact controllability is severely ill-posed while, in spite of its well-posedness, the
null-controllability turns out to be very badly ill-conditioned. Theoretical and numerical results
are stated on the heat equation in one dimension to illustrate the speci

c instabilities of each problem. The main tools used here are �rst a characterization of the
subspace where the HUM control lies and the study of the spectrum of some structured matrices, of
Pick and Lowner type, obtained from the Fourier calculations on the state and adjoint equations.

∗Université Pierre et Marie Curie, (Paris, France)
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Identification of fractures in porous medium

F. Cheikh
∗

H. Ben Ameur
†

G. Chavent
‡

V. Martin
§

J.E. Roberts
¶

Abstract: We consider the problem of identifying fractures as the least squares minimization
of a function evaluating the misfit between a measured pressure and that calculated using a
particular reduced discrete model for flow in porous media with fractures. Inspired by the idea of
refinement indicators [2], we use fracture indicators to find the fractures as well as their hydraulic
properties through an iterative process.
Keyworlds: inverse problems, flow in porous media, fracture indicators, parameter estimation.

The object of this communication is to present a method for identifying fractures in a porous
medium as well as their hydraulic conductivity by means of fracture indicators. The idea of the
method is to assume that the fractures lie on the edges of the mesh, and thus to avoid remeshing
during the process.

1 The discrete fracture model

The forward model that we use is a reduced discrete fracture model for flow in a fractured porous
medium, [1]. In this model the fractures are considered to be interfaces of co-dimension 1. Flow
in the n-dimensional porous medium as well as that in the (n− 1)-dimensional fracture, itself also
a porous medium, is governed by Darcy’s law together with the equation for mass conservation.
Flow in the two media is coupled: the discontinuity of the flux across the fracture serves as a
source/sink term for flow in the fracture, whereas the pressure in the fracture is used to give a
Robin boundary condition on the fracture for the flow problem in the domain minus the fracture.
We discretize this model with a mixed finite element or a finite volume method. The unknown
values for the model are a value for the pressure at the center of each element of the discretization
grid. We suppose that a fracture coincides with a "connected" subcollection of the interior edges
of the grid, i.e. a subcollection the union of whose elements is a connected set. We also suppose
that this subcollection consists of more than one edge.

2 The inverse problem

The above model depends on a parameter representing the effective permeability in the fractures.
The problem of the identification of the fractures can be seen as a parameter estimation problem
in which the parameter to be estimated is the effective permeability in the fractures. The least
squares objective function for the estimation of these parameters is

J(κ) =
∑

T∈Th

∣∣PT − PT

∣∣2,

where Th is the grid and ∀T ∈ Th, PT is the pressure at the center of T given by the model with
parameter κ and PT is the corresponding measured pressure. To minimize J we calculate its
gradient using the adjoint method. The parameter κ ≥ 0 is assumed to have one constant value
for each interior edge of ∀T ∈ Th. Since the location of the fracture is not known, the parameter
κ contains a priori a value for each grid edge. However the fracture indicators reduce the size of
the space where the parameters are looked for and hopefully help locating the fractures.

∗ENIT–Lamsin, Tunis, Tunisia /INRIA Paris-Rocquencourt, France, cheikhfatmaenit@yahoo.fr,
†ENIT–Lamsin,Tunis, Tunisia, hbenameur@yahoo.ca,
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¶INRIA Paris-Rocquencourt, France, jean.roberts@inria.fr.

133 PICOF 2014



3 Fracture indicators

The strategy for localizing the fractures is based on the use of fracture indicators. We first define
a set S of potential fractures, i.e. a set of acceptable (connected and containing more than one
element) subcollections of the set of all interior edges. Then we define a fracture indicator function
I that to each potential fracture F ∈ S associates a value dependent on the gradient of J as follows:
for F ∈ S and ǫ > 0, we define a parameter κ(F, ǫ) which has value ǫ on each edge belonging to
F and value ǫ2 on each other interior edge. Then the indicator has the value

I(F ) = lim
ǫ→0+

d

dǫ
J(κ(F, ǫ)).

The actual calculation of these indicators is quite simple. Two pressure values are obtained for
each interior edge of the grid, one from the solution of the direct problem with no fractures and
the other from the solution of the corresponding adjoint problem. (This calculation is completely
independent of the set S of potential fractures and is only performed once.) From these values, a
direct calculation gives for each pair (E, N), where E is an interior edge and N is a vertex of E,
a flux along E in the direction of N . We obtain both state fluxes VE,N and adjoint fluxes νE,N .
We then put

I(F ) =
∑

E∈F

∑

N⊂E

VE,NνE,N .

For the potential fractures F giving the largest (or close to the largest) value of the indicator,
we now minimize the cost function J associated with the model in which F is considered to be
a fracture, and we select the potential fracture F for which the minimized cost function is least.
The minimization yields the value for the effective hydraulic conductivity κ. For the moment we
consider only constant parameters. Several iteration strategies are considered.

4 Numerical result

We show a preliminary numerical result in
which the domain, the square (0, 3) × (0, 3),
contains one vertical fracture centrally located
and of length 1.5 (depicted in blue in the Fig-
ure). The fracture connects two rectangles of
size 1.5 by 1 in the lower left and the upper
right corners in which the hydraulic conduc-
tivity is 10 times greater than that in the rest
of the domain, except the fracture where the
effective conductivity is 20 times greater. The
domain is impermeable on top and bottom and
has a pressure drop from left to right.
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0

0.5

1

1.5
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Using our method, we obtain a very reasonable result for the location of the fracture. We obtain
the actual fracture but with its length extended by .25 on top and on bottom (by the portion in
red in the Figure). However the permeability that we obtain is quite off the mark (8.51 instead of
20) as the cost function is very flat making it very difficult to obtain a correct minimum.
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Submarine Groundwater Discharge as an inverse problem

Nejla Tlatli Hariga ∗ Thouraya Nouri Baranger† Rachida Bouhlila‡

Abstract: The considered inverse problem concerns the interface land-sea identi�cation and
submarine groundwater exchange estimation from the known of over-speci�ed boundary conditions
on a part of the domain boundary. The approach consists on solving iteratively a data comple-
tion problem on a �ctitious domain, which can be rather larger or smaller than the real one, and
identifying the land-sea interface at the null hydraulic head isovalue then the water �uxes on this
boundary represent the exchanged �ow between the sea and the aquifer.
Keyworlds: Submarine Groundwater, Inverse Problem, Data Completion, Interface Identi�ca-
tion, Energy Functional.

Résume : Nous présentons içi un problème inverse d'identi�cation de l'interface entre un
aquifére côtier et la mer, et par suite de la quantité d'eau échangée, à partir de la connaissance
de données surabondantes sur une partie de la frontière du domaine. La démarche adoptée est
itérative et consiste à résoudre un problème de Cauchy sur un domaine �ctif, qui peut être plus
grand ou plus petit que le domaine réel, ensuite l'interface est localisée comme étant l'isovaleur à
charge hydraulique nulle et le �ux d'eau à travers cette frontière représente le débit échangé entre
la nappe et l'océan.
Mots clés : Eaux soutérraines soumarines, Problème Inverse, Complétion de données, Identi�ca-
tion d'interface, Fonctionnelle energétique.

1 Introduction

Exchange of water between the sea and coastal aquifers is now recognized as being an important
parameter for near shore marine water and groundwater systems. The oceanographic community
divides this exchange into a submarine groundwater discharge (SGD), the �ux of fresh water from
the continent to the ocean, and a submarine groundwater recharge (SGR), the �ux of seawater
from the ocean to the aquifer. The net �ux is therefore the di�erence between these parameters,
known as submarine groundwater exchange (SGE) [5].
The numerical models and software used in SGE simulations vary in complexity, but all of them
have in common the solution of a forward well-posed problem with a given land-sea interface
[3, 4]. However, many deep coastal aquifers extend far under the sea-bed and, generally, little is
known about the extension of these aquifers beyond the shoreline. When studying and modeling
these aquifers, researchers are often led to �xing an arbitrary limit to which a null piezometric level
is assigned. This statement represents the hydraulic contact between the aquifer and the ocean. It
is clear that the position of this limit in�uences the piezometric distribution of the entire aquifer
as well as the exchanges of water between the aquifer and the ocean.
In this work we consider the problem of estimating SGE quantities as an inverse problem

in which the unknown is the location of the interface between the land and the sea, whereas
overspeci�ed boundary conditions are available on another part of the domain boundary.
We consider a �ctitious domain Ωf larger than the real one Ω. Ωf has the same overspeci�ed and
prescribed boundaries as Ω, but is extended beyond the zone where the unknown interface could
be located. The aim is to solve a data completion problem for Ωf , by exploiting the over-speci�ed

∗LAMSIN-ENIT & INAT, BP37, 1002 Tunis-Belvedere, Tunisie, tlatli@topnet.tn,
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data. Then, the land-sea interface is located where the zero hydraulic head isovalue line occurs.
The method and numerical tools used in this paper have already been presented in [1, 2], our
contribution in this work is based on the application aspect.

2 Land-sea interface identi�cation

2.1 The model

The mathematical model of the forward problem is given by equation (1), where the hydraulic
head is denoted by h, T is the given transmissivities �eld and qs is the source term. Γm is the
portion of the boundary where both piezometric level Hm and hydraulic �ux Φm are given (i.e.
over-speci�ed conditions), Γb is the boundary where a condition is known. Depending on the values
taken by parameters λ and µ this condition can be a prescribed hydraulic �ux or head. Γls is the
unknown land-sea interface corresponding to a null hydraulic head.
To identify the unknown land-sea interface Γls we introduce a �ctitious domain with all known
boundaries. Thus we shift the di�culty of �nding the unknown interface to that of identifying the
boundary conditions on the boundaries of the �ctitious domain. We consider an extended domain
Ωf , such that Ωf = Ω ∪ Ωe, Γls = Ω ∩ Ωe and qs the extension of qs to Ωe. ∂Ωe has two parts,
one with the same known conditions as Γb and one, noted by Γu, where the boundary conditions
are unknown. The over-speci�ed data (Φm, Hm) are given on Γm. The data completion problem
is de�ned by equation (2).





div(−T∇h) = qs in Ω,
h = Hm on Γm,
−T ∂h

∂n = Φm on Γm,
−λT ∂h

∂n + µh = φ on Γb,
h = 0 on Γls,

(1)





div(−T∇h) = qs in Ωf ,
h = Hm on Γm,

−T ∂h
∂n = Φm on Γm,

−λT ∂h
∂n + µh = φ on Γb,
h = Hu onΓu,

−T ∂h
∂n = Φu onΓu.

(2)

2.2 The Data Completion Problem and Identi�cation Procedure

Let us consider the above Cauchy problem (2) de�ned in the �ctitious domain Ωf . Provided that
data Hm are compatible with �ux Φm, solving the Cauchy problem can be stated as that of solving
problem (2) and �nding (Hu,Φu) which are the hydraulic head and the �ux on Γu respectively.

To solve this problem, we resort to a method based on the minimization of a constitutive law
gap functional. Here, we focus on the use of the dual form of the method, presented in [2]. The
dual approach in the constitutive law gap functional method follows two steps. First, we consider,
for a given unknown �ux η, two mixed well-posed problems and in the second step, we minimize
a constitutive law gap functional on the unknown data η. For more details, see [2].
We use an iterative process based on the data completion method to perform the interface identi-
�cation : we consider an initial �ctitious domain Ωo

f ; the data completion problem is then solved
using this �ctitious domain. This procedure is repeated by changing the �ctitious domain at each
iteration until the interface Γls is identi�ed (see �gure 1).
When the optimization problem is solved we obtain the hydraulic head throughout the extended
domain Ωf . The land-sea interface is then determined as the geometric support of the isoline
h = 0. Since the piezometry over the entire initial domain Ω is available, we can compute the hy-
draulic �ux across any internal boundary and evaluate the quantity of water exchanged between
the land and the sea. If this quantity is negative, we are in the presence of seawater intrusion, if
not, then of submarine discharge.
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3 Conclusion

For numerial trials, we study di�erent cases : in the discharge situation as well as the intrusion
situation, with �ctitious domain larger the real one, as well as smaller and with noisy data. On all
these tests obtained results were satisfactory and errors acceptable.
Therefore this procedure could be applied as the �rst step in coastal aquifer studies and modeling
in order to specify the extension of the domain and the position of the aquifer-ocean border. It
could also be a stage in a larger iterative procedure including domain geometry and extension,
and the calibration of physical parameters.
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Identi�
ation de �ssures interfa
iales en élasti
ité

tridimensionnelle par une méthode d'optimisation.

Mohamed Larbi KADRI

�

Jalel Ben Abdallah

y

Résume : On s'intéresse au problème d'identi�
ation de �ssures interfa
iales dans un solide

élastique tridimentionnel. On utilise des données surabondantes et disponibles sur une partie de la

frontière. Le problème ainsi posé est un problème de Cau
hy 
onnu pour être mal-posé au sens de

la stabilité. Nous ramenons la résolution du problème de Cau
hy à un problème de minimisation

sous 
ontraintes d'une fon
tion 
oût. Le gradient de la fon
tion 
oût est e�e
tué par la méthode

de l'état adjoint.

Mots 
lés : Problème inverse, identi�
ation de �ssures interfa
iales, élasti
ité, optimisation.

1 Introdu
tion

Ce travail traite de l'identi�
ation de �ssures interfa
iales dans un solide élastique tridimensionnel.

Les données du problème sont les dépla
ements et les e�orts mesurés sur une partie a

essible du

bord du solide. Ce problème appartient à la famille des problèmes de Cau
hy, 
onnus pour être

mal posé au sens de la 
ontinuité de la solution vis à vis des données [1℄. L'idée qu'on propose

est de 
ombiner les te
hniques d'optimisation et de la dé
omposition de domaine pour résoudre


e problème de Cau
hy. Nous ramenons la résolution du problème de Cau
hy à un problème de

minimisation sous 
ontraintes d'une fon
tion 
oût. Le gradient de la fon
tion 
oût est e�e
tué par

la méthode de l'état adjoint. La te
hnique de l'état adjoint permet de transformer le problème de

minimisation sous 
ontraintes en la re
her
he du point de stationnarité d'un Lagrangien asso
ié.

L'idée de 
et algorithme est inspirée des méthodes de dé
omposition de domaine appliquées aux

problèmes de 
ontr�le optimal, qui ont été introduites initialement par Ellabib [2℄, Bensoussan et

al. [3℄ et reprise plus tard par Benamou [4℄ et Lions [5℄.

2 Position du problème

Nous 
her
hons à identi�er des �ssures lo
alisées sur une surfa
e à priori 
onnue dans un solide

élastique tridimentionnel (dé
ollement de surfa
e) à partir de données surabondantes sur seulement

une partie de la frontière externe. La littérature sur la déte
tion de �ssures est très abondantes,

nous 
itons [6℄ et [7℄ où l'identi�
ation est faite moyennant des 
onditions aux limites surabon-

dantes. Le premier est dans le 
adre de l'élastostatique alors que le deuxième utilise des mesures

qui dépendent du temps. L'exemple suivant est inspiré du 
as étudié dans [6℄. Le domaine �ssuré

est un parallélépipède de dimensions 70� 25� 15 
onstitué d'un matériau homogène, élastique et

isotrope (E = 200GPa, � = 0:3). Deux �ssures elliptiques : S

1

d'axes prin
ipaux a

1

= 13 et b

1

= 5

parallèles aux axes x et y, et S

2

d'axes prin
ipaux a

2

= 7 et b

2

= 2:5 faisant un angle de�45 ave


l'axe des x. Le 
entre de la �ssure S1 se situe au point de 
oordonnées ( x = 45 , y = 15 ), 
elui de

S

2

au point de 
oordonnées ( x = 15 , y = 15 ) sur la surfa
e plane �

i

= f(x; y; z)

t

2 �=z = 10g

(voir �gure 1). La fa
ette gau
he du 
ube est en
astrée, la fa
ette droite est bloquée seulement

selon les dire
tions y et z . Le 
hargement exer
ée sur le solide est un e�ort de tra
tion t

0

= 2kPa

appliqué sur la totalité des surfa
es supérieures et inférieures agissant sur le plan xz ave
 un angle

�

ENIT�lamsin, medlarbi.kadri�lamsin.rnu.tn,

y

ENIT�MAI, jalel.benabdallah�enit.rnu.tn
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de 45

0

. Les autres fa
ettes sont libres. Le domaine est dis
rétisé par des éléments �nis quadratiques

tridimensionnels ave
 trois degrés de liberté (8012 éléments �nis). �




= �

+




[�

�




est dis
rétisée en

999 noeuds. Les �ssures S

1

et S

2

sont des frontières ave
 une 
ondition de Neumann homogène

i:e les 
ontraintes sont nulles, alors que sur le reste du plan interne �

i

n S

1

[ S

2

les 
onditions

de 
ontinuités des dépla
ements et 
ontraintes usuelles sont admises. La simulation est faite en

utilisant des données synthétiques, générées par la résolution du problème dire
t.

3 Le Problème de Cau
hy en élasti
ité

Le problème d'identi�
ation de �ssures à partir de mesures partielles et surabondantes est un

problème de Cau
hy en élasti
ité qui 
onsiste à 
her
her un 
hamp de dépla
ement u véri�ant le

problème aux limites suivant :

8

<

:

�div�(u(x)) = f dans 


u =
~
u(x) sur �




�(u(x)):n =

~

t(x) sur �




(1)

Où �(u) est le 
hamp de 
ontraintes relié au 
hamp de déformations "(u) par la relation

de 
omportement �(u) = C"(u) (C est le tenseur de rigidité). Pour lo
aliser les défauts, deux

problèmes de Cau
hy sont résolus. Le premier P

+

est dé�ni sur le sous-domaine supérieur 


+

où

les données surabondantes sont 
onsidérées uniquement sur la fa
ette supérieure �

+




et les in
onnus

à identi�er sont 
onsidérés sur l'interfa
e �

i

. Le se
ond problème de Cau
hy P

�

est dé�ni sur le

sous-domaine inférieur où les données surabondantes sont lo
alisées sur la fa
ette inférieure et les

in
onnus seront identi�és sur �

i

. Nous nous n'intéressons qu'aux in
onnus de dépla
ements. En

fait, désignant par u

+

(resp. u

�

) les dépla
ements sur �

i

issues de la résolution de P

+

(resp. P

�

),

les �ssures apparaîtront 
omme les parties de �

i

où le ve
teur de saut des dépla
ements [u

+

�u

�

℄

n'est pas nul.

Figure 1 � Géométrie du domaine �ssuré

4 Le Problème d'optimisation

On 
onsidère les deux problèmes suivants (issus de la dupli
ation �
tive du problème de Cau
hy

(1), dont les solutions sont notées u

D

et u

N

:

8

<

:

�div�(u

D

) = f dans 


u

D

=
~
u sur �




�(u

D

):n = � sur �

i

et

8

<

:

�div�(u

N

) = f dans 


�(u

N

)):n =

~

t sur �




�(u

N

):n = � sur �

i

(1)
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Pour formuler le problème de 
ontr�le optimal relatif au problème (1) nous introduisons une

fon
tion 
oût s

u

= u

D

�u

N

qui minimise l'é
art entre les solutions u

D

et u

N

au sens de la norme

L

2

, et 
e
i sans ajouter au
un terme qui assure la régularité du 
ontr�le.

On 
onsidère le problème d'optimisation suivant :

8

>

>

<

>

>

:

Minimiser J(u

D

(�);u

N

(�)) 8� 2 H

�

1

2

(�

i

)

où J =

1

2

Z




(u

D

� u

N

):(u

D

� u

N

)d


ave
 u

D

(�) et u

N

(�) solutions de (1)

(2)

C'est un problème d'optimisation d'une fon
tionnelle 
onvexe.

On 
onsidère les espa
es de dépla
ements admissibles V = fu 2 H

1

(
);u

j�




=
~
ug et V

0

=

fu 2 V;u

j�




= 0g. Les formulations faibles de (1) s'e
rivent :

Trouver u

D

2 V telle que : 8v 2 V

0

(
)

a

D

(u

D

;v) =

Z




�(u

D

) : "(v) =

Z




fvdx+

Z

�

i

�vd� (3)

Trouver u

N

2 V telle que 8v 2 V (
)

a

N

(u

N

;v) =

Z




�(u

N

) : "(v) =

Z




fvdx+

Z

�




~

tvd� +

Z

�

i

�vd� (4)

On dé�ni l'espa
e des solutions admissibles U

ad

par :

U

ad

= f(u

D

(�);u

N

(�)) solutions de (3) et (4) 8� 2 H

�

1

2

(�

i

)g

Le problème d'optimisation (2) peut être reformulé 
omme suit :

Minimiser J(u

D

(�);u

N

(�)) 8 (u

D

(�);u

N

(�)) 2 U

ad

(5)

Soit u

D

, �

D

, u

N

, �

N

2 H

1

(
), � 2 H

�

1

2

(�), on introduit le 
hamps de multipli
ateurs de

Lagrange a�n de relaxer la 
ontrainte sur les dépla
ements :

L(u

D

;u

N

;�;�

D

;�

N

) = J(�;u

D

;u

N

)�

Z




�(u

D

) : "(�

D

) +

Z




f�

D

dx

+

Z

�

i

��

D

d��

Z




�(u

N

) : "(�

N

)dx

+

Z




f�

N

dx+

Z

�




~

t�

N

d� +

Z

�

i

��

N

d�

(6)

�

D

; �

N

2 H

1

(
) sont les multipli
ateurs de Lagrange asso
iés à la 
ontrainte :

�(u

N

):n = �(u

D

):n sur �

i

Grâ
e à la 
onvexité, le problème d'optimisation (5) est équivalent au problème de re
her
he

de point-selle :

L(u

D

;u

N

;�;�

D

;�

N

) � L(u

D

;u

N

;�;�

D

;�

N

) � L(v

D

;v

N

;�;�

D

;�

N

); 8(v;�

D

;�

N

) 2 V�H

1

2

(�

i

)

(7)

L'étude du point de stationnarité de 
e Lagrangien 
onduit à un problème adjoint dé�ni par

la di�érentiation du Lagrangien par rapport aux 
hamps dé
rivant le problème dire
t.

Nous allons 
al
uler l'expression du gradient de la fon
tionnelle J à partir de l'état adjoint.

En annulant les dérivées de L par rapport à �

D

et �

N

, on obtient les équations (3) et (4). En

annulant les dérivées de L par rapport à u

D

et u

N

on obtient les équations adjointes suivantes :

a

D

(v;�

D

) = (u

D

� u

N

;v)

�

i

; 8v 2 V

0

(8)

141 PICOF 2014



et

a

N

(v;�

N

) = �(u

D

� u

N

;v)

�

i

; 8v 2 V (9)

respe
tivement.

D'où les equations adjointes sont données par :

8

<

:

�div�(u

D

) = 0 dans 


u

D

= 0 sur �




�(u

D

):n = (u

D

� u

N

) sur �

i

et

8

<

:

�div�(u

N

) = 0 dans 


�(u

N

)):n = 0 sur �




�(u

N

):n = �(u

D

� u

N

) sur �

i

(10)

Les multipli
ateurs de Lagrange �

D

et �

N

assurent don
 la 
ontinuité des dépla
ements à

travers �

i

.

Soit J (�) = J(�;u

D

;u

N

). Le problème de minimisation est equivalent au problème de déter-

mination de � 2 H

�

1

2

(�

i

) telle que J ( ) soit minimisée. Maintenant, la derivée première de J

est dé�nie à travers son a
tion sur les variations � :

<

dJ

d�

>= (u

D

� u

N

;
~
u

D

�
~
u

N

)

�

i

8
~
� 2 (L

2

(�

i

))

2

(11)

Où
~
u

D

et
~
u

N

sont solutions de :

a

D

(
~
u

D

;v) = (
~
�;v)

�

i

8v 2 V (
) (12)

et

a

N

(
~
u

N

;v) = �(
~
�;v)

�

i

8v 2 V (
) (13)

Soit v = �

D

dans (12), v = �

N

dans (13) et v = u

N

dans (9). En 
ombinant les résultats on

obtient :

dJ

d�

= �

D

� �

N

sur �

i

: (14)

4.1 L'algorithme de minimisation

Pour résoudre le problème de 
ontr�le optimal, on a besoin d'un algorithme e�
a
e de minimisa-

tion. La fon
tionnelle à minimiser, étant quadratique, nous optons pour un algorithme de des
ente

e�
a
e qui est l'algorithme du Gradient Conjugué.

S
héma de la minimisation

La résolution du problème de minimisation est présentée sur la �gure 2. Chaque itération


omporte s
hématiquement trois phases :

� La résolution des problèmes dire
ts (1) (le 
al
ul de u

D

et u

N

permet le 
al
ul de J).

� La résolution des états adjoints (10) permet le 
al
ul de rJ .

� Le pas d'optimisation proprement dit permet la 
al
ul de la nouvelle estimation de �.

5 Résultats Numérique

Le Cal
ul du gradient ne dépend que des résultats des problèmes dire
ts et adjoints. On obtient

don
 toutes les 
omposantes du gradient au prix d'un seul 
al
ul auxiliaire. L'utilisation de l'état

adjoint est don
 parti
ulièrement e�
a
e pour des problèmes ave
 un grand nombre d'in
onnues.

Les problèmes adjoints dépendent des problèmes dire
ts ils seront toujours résolus après 
eux-
i.

L'identi�
ation des �ssures par la méthode d'optimisation permet l'identi�
ation de la position

et l'allure des �ssures. l'algorithme 
onverge en 27 itérations pour des données bruitées à 10%. Il

peut être intéressant de régulariser le problème d'optimisation en ajoutant un terme régularisant

à la fon
tionnelle 
oût.
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Figure 2 � Etapes de la minimisation de la fon
tionnelle 
oût J .

Figure 3 � [u

+

�u

�

℄ haut : exa
t à travers �

i

, en bas à gau
he : données non bruitées. (N.B.=0%),

en bas à droite : données bruitées (N.B.=10%)
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A free boundary prolem for the stokes operator

F. Bouchon∗ G. Peichl † M. Sayeh ‡ R. Touzani§

Abstract: A free boundary problem for the Stokes equations governing a viscous flow with
over-determined condition on the free boundary is investigated. This free boundary problem is
transformed into a shape optimization one which consists in minimizing a Kohn Vogelius energy
cost functional. Existence of the shape derivative of the cost functional is also proven and the
analytic expression of the shape derivative is given in the Hadamard structure form. The gradient
information is combined with the level set method in a steepest descent algorithm to solve the
shape optimization problem. The efficiency of this approach is illustrated by numerical results.
Keyworlds: Bernoulli problem, Shape derivative, free boundary problems, level set method.

1 Formulation of the problem
We consider a problem derived from a two-dimensional magnetic shaping process which can be
viewed as an analog of the Bernoulli free boundary problem [1], where the Laplace operator is
replaced by the Stokes operator. Typically, a fluid is subject to Lorentz forces. The shape of
the fluid is determined by the pressure balance equations and the fluid flow is governed by the
incompressible Navier-Stokes equations. Consider a bounded C2,1 domain A ⊂ R2 with boundary
Γf . The fluid is considered in levitation around A and occupies then the domain Ω = B\A, where
B is a bounded domain with boundary Γ that contains A. Let u and p stand for the fluid velocity
and pressure respectively. Let f ∈ H1

loc(R2)2 denote the density of a given Lorentz force and
g ∈ H1/2(Γf )2. For a given vector field λ we consider the free boundary problem of determining
the domain Ω occupied by the fluid, the fluid velocity u and its pressure p such that:

− 2div(σ(u)) +∇p = f in Ω,

divu = 0 in Ω,

u = g on Γf ,

u = 0 and 2σ(u)ν − pν = λ on Γ.

(1)

Above, ν is the out normal unit vector to the boundary Γ respectively and σ(u) = 1
2 (∇u+∇uT ) is

the symmetric deformation tensor. For given Ω let (uD, pD) and (uN , pN ) be the functions defined
on Ω satisfying both the first three relations in (1) and

uD = 0 and 2σ(uN )ν − pNν = λ on Γ, (2)

respectively.
Let us define the functional J on a suitable class of domains Ω by

J(Ω) = 2

∫

Ω

σ(uD − uN ):2,

where σ(u):2 =
∑2
i,j=1 σ(u)2

ij . The problem (1) is equivalent to the following shape optimization
problem: find (u,Ω) such that
∗Blaise Pascal university Frence, francois.bouchon@math.univ-bpclermont.fr
†University of Graz Austria, gunther.peichl@uni-graz.at
‡ENIT–lamsin, Mohamed.Sayeh@ipein.rnu.tn
§Blaise Pascal university Frence, rachid.touzani@math.univ-bpclermont.fr
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J(Ω) = min
Ω̃
J(Ω̃) = 0. (3)

2 Shape derivative and numerical results
In order to define the shape derivative [3] of J we perturb the reference domain Ω by a transfor-
mation of type Ft = id+ th, where h is C2 vector field on R2 vanishing on Γf and t is sufficiently
small such that Ft defines a family of C2-diffeomorphisms from Ω onto its image. For such t one
sets Ωt = Ft(Ω), Γt = Ft(Γ). Then the Eulerian derivative of J at Ω in the direction h is defined
as the limit, when it exists,

J ′(Ω;h) = lim
t→0

1

t
(J(Ωt)− J(Ω)).

The functional J is called shape differentiable at Ω if J ′(Ω;h) exists for all h ∈ C2(R2,R2) and
defines a continuous linear functional on C2(R2,R2). We use the level set method [2] and the shape
gradient information in a steepest descent algorithm to solve numerically the shape optimization
problem. The following numerical test illustrates the efficiency of this approach. The dashed line
is the fixed boundary and the solid black one is the exact solution and the solid red line is the
numerical solution which converges to the exact one, for (U,p) is given in polar coordinate by,

U(r, θ) =

(
u(r, θ)
v(r, θ)

)
=

(
ur(r) cos2(θ) + uθ(r) sin2(θ)
(ur(r)− uθ(r)) cos(θ) sin(θ)

)
, p(r, θ) = (αr +

β

r
) cos(θ),

where ur(r) = A+ B
r2 + α

8 r
2 − β

2 lnr, uθ(r) = A− B
r2 + 3α

8 r
2 − β

2 (1 + lnr), and A, B, α, β are real
constants chosen in an appropriate way.
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3.2 Data completion (DC)





Two step observer approach to solve Cauchy problem for
Laplace equation

Muhammad Usman Majeed∗ Taous Meriem Laleg-Kirati†

Keyworlds: Inverse problem, Laplace equation, State observer

Abstract

In this paper a two step state observer approach is developed to solve severely ill-posed
Cauchy problem for Laplace equation on an annulus domain. Cauchy data is available only on
the outer boundary and objective is to find solution on the inner boundary. For this purpose
a two step observer is designed with a forward and a reverse step and results of both steps
are combined to get full solution. Numerical results are presented.

Problem statement
Let Ω be the annulus domain in R2 with two boundaries Γin and Γout respectively, the cauchy
problem for Laplace equation on this domain is given by (1).

ΩΓin

Γout

Figure 1: Annulus domain Ω with inner boundary Γin and outer boundary Γout.

Find u|Γin : 



4u = r2 ∂
2u

∂r2
+ r

∂u

∂r
+
∂2u

∂θ2
= 0 in Ω,

u = f(r, θ) on Γout,
∂u

∂r
= g(r, θ) on Γout.

(1)

Two step state observer approach is developed to solve this problem as follows.

Methodology
In control systems theory, a state observer provides an estimate of the observable internal
states of a real system from measurements of inputs and outputs (i.e. data, in inverse problem
terminology). In order to solve the inverse problem, first of all Laplace equation is written as
first order state equation in variable θ by introducing new variables as follows,

ξ̇ = Aξ where A =




0 1

−r2 ∂
2

∂r2
− r ∂

∂r
0


 and ξ =

(
ξ1 = u

ξ2 =
∂u

∂θ

)
, (2)

where dot represents partial derivative with respect to θ. Given the abstract formulation (2),
following theorem provides the algorithm for the two step state observer to solve problem (1).

∗M. U. Majeed is a PhD Student in Computer, Electrical and Mathematical Sciences and Engineering (CEMSE),
King Abdullah University of Science and Technology (KAUST), K.S.A muhammadusman.majeed@kaust.edu.sa,
†T. M. Laleg-Kirati is an Assistant Professor in CEMSE, KAUST, K.S.A taousmeriem.laleg@kaust.edu.sa
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Figure 2: Initial simulation results on Γin: blue: true solution obtained by solving a well-posed
forward problem, red: computed using observer (left: forward step, right: reverse step, bottom:
Half of the well constructed solution taken from each step).

MAIN RESULTS
Theorem 1. Let ξ̂ be the estimate of true state ξ, A be the state operator matrix and K be the
gain operator in proper sobolev spaces respectively, then solution ξ̂1|Γin found by combining the
two solutions, obtained from one forward (θ = 0→ θ = 2π) and one reverse (θ = 2π → θ = 0)
implementation of the following algorithm converges to the true solution of the inverse problem
(1). 




˙̂
ξ = Aξ̂ −K(f̂ − f) in Ω,

ξ̂1 = f̂(r, θ) on Γout,
∂ξ1
∂r

= g(r, θ) on Γout,

∂2ξ̂1
∂θ2

= −r2 ∂
2ξ̂1
∂r2

− r ∂ξ̂1
∂r
−K(f̂ − f) on Γin.

(3)

Initial guess at the start of the observer algorithm is zero, that is, ξ̂ = 0 over the whole domain
Ω ∪ Γin ∪ Γout except ξ̂1 = f̂ on Γout as given above. Last equation in (3) is the assumption
that Laplace equation is valid on the inner boundary Γin [1]. Proof of the above theorem will
be provided in full version of the paper using concepts of semigroup theory and observability
for infinite dimensional systems [2] [3].

Numerical Results
Above two step observer is implemented numerically using second order accurate centered
finite difference schemes in r and forward Euler in variable θ. Fictitious point method is
used on the inner boundary Γin to tackle the boundary condition [1]. True solution and the
one obtained using observer approach is presented in Figure(2) on the inner boundary Γin.
Convergence of observer (3) in very small θ guarantees the accuracy of two step approach.
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Re
overing boundary data from in
omplete

Cau
hy data: The Cau
hy-Stokes system

Elyes Ahmed

∗
, Amel Ben Abda

†
,

De
ember 15, 2013

Abstra
t: We are interested in this paper with the ill-posed Cau
hy-Stokes

problem. We 
onsider a data 
ompletion problem in whi
h we aim re
overing

la
king data on some part of a domain boundary, from the knowledge of not-


omplete Cau
hy data on the other part. The inverse problem is formulated as

an optimization one using an energy-like fun
tional. We gives the �rst order

optimality 
ondition in term of an interfa
ial operator. Displayed numeri
al

results highlight its a

ura
y.

Keyworlds:Cau
hy-Stokes problem, data 
ompletion, Shear stress, Interfa
ial

equation.

We are interested in the Cau
hy-Stokes problem that 
onsists of solving the

Stokes problem on a domain from a given-data on a part of its boundary, whi
h

known as data 
ompletion problem. The more 
ommon problem in su
h inverse

problem type 
onsists in re
overing the missing boundary 
onditions on the in-

a

essible part of the boundary from known-
au
hy data that are over-spe
i�ed

on a

essible boundary: assuming velo
ity �eld and the normal stress are given

over the a

essible region of the boundary [1℄. However, in many engineering

appli
ations, or essentialy in biomedi
al appli
ations, these data are often not


omplete,i.e. that on the a

essible boundary Γc available data often refer to the

velo
ity �eld u and only one 
omponent of the normal stress. From haemody-

nami
s appli
ations, whi
h inspires this work, where for spe
ial geometries only

the tangential 
omponent of the normal stress 
ould be known from medi
al

measurements, whilst in other situations one knows the normal 
omponent.(we

refer in the sequel to this data as less-known data). The problem we are dealing

with is to re
onstru
t the velo
ity v and the pressure p that �ts the less-known

data on the a

essible boundary. Giving a velo
ity Φ and the 
orresponding

shear stress 
omponent T , we would like to re
over the 
orresponding velo
ity

and the normal stress on Γi.

Then, the Cau
hy problem is written as :





−ν∆u + ∇p = 0 in Ω
∇ · u = 0 in Ω
(σ(u)n)τ = T on Γc

u = Φ, on Γc.

(1)

∗
ENIT�lamsin, elyes_ahmed�yahoo.
om,

†
ENIT�lamsin, amel.benabda�enit.rnu.tn
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Ω

Γi

Γc

where ν is the vis
osity of the �uid, σ denotes the stress tensor σ(u) = 2νD(u)−
pI, where D(u) is the strain tensor de�ned by : D(u) = 1

2 (∇u + ∇uT ), and I
is the identity matrix in R2

. We 
onsider two mixed well-posed problems: the

�rst one is a 
lassi
al Diri
hlet problem (with Diri
hlet 
ondition on Γc), and

the se
ond one is Stokes problem with non 
lassi
al boundary 
ondition. We

attribute to ea
h of them one unknown on Γi. Then to reformulate the inverse

problem as a minimization one, we 
onsider the energy-like error fun
tional [2℄:

E(g, η) =
1

2

∫

Ω

σ(uη
1 − ug

2) : ∇(uη
1 − ug

2) (2)

The �rst order optimality 
ondition is rephrased in terms of an interfa
ial prob-

lem using the Steklov-Poin
aré operator, and we propose a numeri
al pro
edure

for solving the resulting interfa
e problem.
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An inverse boundary problem

for the heat equation in the

presence of small

inhomogeneities

Abstract

For the heat equation in a bounded domain, we consider the inverse pro-
blem of identifying locations and certain properties of the shapes of small
heat-conducting inhomogeneities from dynamic boundary measurements on
part of the boundary and for �nite interval in time. The key ingredient is an
asymptotic method based on appropriate averaging of the partial dynamic
boundary measurements. Our approach is expected to lead to very e�ective
computational identi�cation algorithms.

Let Ω be a bounded, smooth subdomain of Rd, d = 2, 3. For simpli-
city we take ∂Ω ∈ C∞. We suppose that Ω contains a �nite number of in-
homogeneities, the total collection of inhomogeneities thus takes the form
Bα =

∪m
j=1(zj + αBj). The points zj ∈ Ω, j = 1 . . . m, determine the location

of the inhomogeneities. We assume that α > 0, the common order of magni-
tude of the diameters of the inhomogeneities, is su�ciently small that these
inhomogeneities are disjoint.

Let u the solution of the heat equation :




∂tu − c0∆u = 0, (x, t) ∈ Ω × [0, T ]
u(x, 0) = φ(x), x ∈ Ω
u(x, t)|∂Ω×[0,T ] = u(x, t)|Γ×[0,T ] = f(x, t)

Where φ ∈ C∞(Ω) and f ∈ C∞([0, T ] × C∞(∂Ω)).
Let uα denote the solution of the heat equation in the presence of inhomo-

1
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geneities :





∂tuα − (∇ · cα∇)uα = 0, (x, t) ∈ Ω × [0, T ]
uα(x, 0) = φ(x), x ∈ Ω
uα(x, t)|Γ×[0,T ] = f(x, t)

To obtain the localization of the inhomogeneities centers we need to apply
a Fourier inversion transform to a function ℵα(η). We have to recall also that
the function e2iη·zj is exactly the Fourier Transform (up to a multiplicative
constant) of the Dirac function δ−2zj

(a point mass located at −2zj), where
the set of the points zj, j = 1, . . . ,m represents the centers of the inclu-
sions to be detected. As well, if we consider that we have already constructed
numerically the ℵα(η), after applying the IFFT (Inverse Fast Fourier Trans-
forms) algorithm over ℵα(η), we obtain the linear combination of the Dirac
functions δ−2zj

. So that, after rescaling, we obtain the total collection of the
points zj, j = 1, . . . , m.

We had also applied the result obtained in the �rst part in numerical
examples Using Matlab and Fortran.

2
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Managing Disasters Consequences on the Fitness of

Environmental Resources for Population Survival

Fethi Ben Belgacem∗

Abstract: In this presentation we will attempt to give an illustration of mathematical models
describing population dispersal and persistence in environments that are "�t" for them. We will
characterize this "Fitness" through the said models, and show how it may be e�ected pursuant
to natural and manmade disasters, which may warrant interventions to save the population(s)
considered. This means that before direct intervention, the situation must be studied and the new
�tness parameters must be estimated beforehand to predict the best outcome for the population
after the intervention. This may save a lot of money and resources that may be lost in vain if
the problem were treated ad-hoc. We illustrate the conceptual and mathematical aspects of the
�tness through the mead �sh kill of 2002 in kuwait, and other similar occurrences around the world.

Keyworlds: Population dispersal, �tness.

∗Department of Mathematics, Faculty of Basic Education, PAAET, Aardhia, Kuwait, fbmb1007@gmail.com,
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3.3 Inverse problems for electromagnetics (IPE)





A new approach to solve the inverse scattering problem
for the wave equation

Maya de Buhan∗ Marie Kray†

Abstract: We propose a new approach to solve the inverse scattering problem: the aim is to
recover the location, the shape and the physical properties of an unknown obstacle surrounded
by a known ambient medium. Our approach works directly with the wave equation in the time-
dependent domain and combines two methods recently developed by the authors. The first method
is the Time-Reversed Absorbing Condition (TRAC) method which allows us to reconstruct and
regularize the signal from boundary measurements and then reduces the computational domain.
The second method is the Adaptive Inversion (AI) method which relies on a mesh-adaptation
and basis-adaptation process, that increases the accuracy of the reconstruction. We propose some
numerical results in two-space dimensions.

Keyworlds: Inverse problems, wave equation, time reversed absorbing boundary condition, mesh
and basis adaptation.

Résumé : Nous proposons une nouvelle approche pour résoudre le problème de la diffraction
inverse : le but est de retrouver la position, la forme et les propriétés physiques d’un obstacle
entouré d’un milieu ambiant dont on connaît les caractéristiques. Notre approche fonctionne di-
rectement dans le domaine temporel, à partir de l’équation des ondes, et combine deux méthodes
développées récemment par les auteurs. La première est la méthode TRAC (Time-Reversed Ab-
sorbing Condition) qui permet de reconstruire et de régulariser le signal à partir des données
mesurées au bord et de réduire ainsi la taille du domaine de calcul. La deuxième est une méthode
d’inversion (Adaptive Inversion method) qui repose sur un processus d’adaptation de base et de
maillage pour augmenter la précision de la reconstruction. Nous présentons plusieurs résultats
numériques en deux dimensions.

Mots clés : Problèmes inverses, équation des ondes, condition aux limites absorbante retournée
en temps, adaptation de base et de maillage.

1 Our approach: Combination of the TRAC and AI methods
In paper [1], we propose a new method to solve the following inverse problem: we aim at recon-
structing, from boundary measurements, the location, the shape and the wave propagation speed
of an unknown inclusion surrounded by a medium whose properties are known.

Our strategy combines two methods recently developed by the authors:

1. the Time-Reversed Absorbing Condition method (TRAC) first introduced in [2]:
It combines time reversal techniques and absorbing boundary conditions to reconstruct and
regularize the signal in a truncated domain that encloses the inclusion. This enables one
to reduce the size of computational domain where we solve the inverse problem, now from
virtual internal measurements.

∗CNRS, UMR 8145, MAP5, Université Paris Descartes, France, maya.de-buhan@parisdescartes.fr
†Department of Mathematics and Informatic, University of Basel, Switzerland, marie.kray@unibas.ch
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2. the Adaptive Inversion (AI) method initially proposed for the viscoelasticity equation in [3]:
The originality of this method comes from the parametrization of the problem. Instead of
looking for the value of the unknown parameter at each node of the mesh, it projects the
parameter into a basis composed by eigenvectors of the Laplacian operator. Then, the AI
method uses an iterative process to adapt the mesh and the basis of eigenfunctions from the
previous approximation to improve the reconstruction.

The novelty of our work is threefold. Firstly, we present a new study on the regularizing power
of the TRAC method. Secondly, we adapt the Adaptive Inversion method to the case of the wave
equation and we propose a new anisotropic version of the iterative process. Finally, we present
numerical examples to illustrate the efficiency of the combination of both methods. In particular,
our strategy allows (i) to reduce the computational cost, (ii) to stabilize the inverse problem and
(iii) to improve the precision of the results.

2 Numerical Results
On Figure 1, we display our results for a penetrable pentagon. We compare the exact propagation
speed (a) to the reconstruction by using both methods, first without noise on the recorded data (b),
then with 20% level of noise (c). We denote by 20%-noisy TRAC data, the virtual data obtained
after the TRAC process from 20%-noisy external boundary measurements.

Figure 1: Shape and properties reconstruction of a penetrable pentagon by using both TRAC and
AI methods: (a) Propagation speed profile inside and outside the inclusion. (b) Result obtained
with 0%-noisy TRAC data, relative L2-error = 1.72%. (c) Result obtained with 20%-noisy TRAC
data, relative L2-error = 1.92%.
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3D direct and inverse solver for eddy current tests of SG

tubes

P.-L Filiot∗, H. Haddar†, M.-K Riahi‡ and Z. Jiang§

Abstract: We consider the inverse problem of estimating the shape profile of an unknown
deposit on the exterior of stream generator (SG) tubes from a set of eddy current impedance
measurements due to coils located in the interior of the tubes. We shall address the problem in a
3D setting to treat the case where the deposits are located in the vicinity of the support plates.
Numerical validating experiments on synthetic deposits with different shapes will be presented.
Keyworlds: inverse problems, shape identification, eddy current testing.

1 Industrial problem

Figure 1: Sketch of the tube + coils +
supporting plates.

We are interested in the direct and inverse simulation of
eddy current testing (ECT) experiments of SG tubes us-
ing monostatic probes composed of two coils introduced
in the interior of the tubes. The generator coil creates an
electromagnetic field which in turn induces a current flow
in the conductive material nearby. The presence default
distorts the flow and change the current in the receiver
coil, which is measured as ECT signals. Our goal is to
estimate the shape of deposits with known electromag-
netic parameters from these ECT signals. Although the
tube and coils are axisymmetric, one has to address the
problem in a 3D setting since in practice the deposits are
located in the vicinity of the (non axi-symmetric) support plates (see Figure 1).

2 The direct eddy current problem

The eddy current approximation of the harmonic Maxwell’s equations reads: curlH−σE = J on Ω
and curlE−iωµH = 0 on Ω, where H and E are the magnetic and the electric field respectively. J
is the the source term representing the current density (in the coils) and σ, ω and µ are respectively
the conductivity, frequency and magnetic permeability. In order to solve the eddy current problem
we use the mixed formulation on (A,Vc), where A represents the magnetic vector potential
and Vc the scalar electric potential only defined on Ωc : the region where σ 6= 0. We have
E = iωA+ ∇Vc on Ω and µH = curlA on Ω (see for instance [1]). We are thus concerned with

∗EDF-R&D STEP, pierre-louis.filiot@edf.fr,
†Inria-Saclay and Ecole polytechnique, haddar@cmap.polytechnique.fr,
‡Inria-Saclay and Ecole polytechnique, riahi@cmap.polytechnique.fr,
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the strong formulation (where ΩI := Ω \ Ω̄c),




curl
( 1

µ
curlA

)
− 1

µ̃
∇divA − σiωA − σ∇Vc = J on Ω,

div
(
iωσA + σ∇Vc

)
= divJ = 0 on Ωc,(

σiωA + σ∇Vc

)
. ν = J . ν on ∂ΩI ∩ ∂Ωc,

A . ν = 0 and
( 1

µ
curlA

)
× ν = 0 on ∂Ω.

(1)
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Figure 2: Complex-plane 3D-vs-2D
comparison of the Impedance ZF3 and
ZFA.

The ECT is based on the analysis and processing of
impedance signal Z(Ωd) measured during a scan proce-
dure of SG tube. Numerically, the impedance measured
for the coil k in the electromagnetic field induced by the
coil l is computed as follows:

∆Zkl =
1

|J|

(
µ0 − µd

iωµdµ0

∫

Ωd

(
curlEk . curlE0

l

)
δv

+ (σ0 − σd)

∫

Ωd

Ek .E
0
l δv

)
.

(2)

In industrial applications one uses different combinations
of ∆Zkl for a given frequency ω.We give in Figure 2 a
validation of the direct 3D vs 2D solvers (in the axisym-
metric case) by comparing two frequently used combina-
tions ZFA = ∆Z11 + ∆Z21 and ZF3 = ∆Z11 − ∆Z22.

3 The inverse problem

The inverse problem aims at minimizing the misfit cost
function J (Ωd) =

∫ zmax

zmin
|Z(Ωd; ζ) − Zmes(ζ)|2dζ, where Z is either ZFA or ZF3 and Ωd denotes

the deposit domain. We shall present an inversion algorithm based on steepest gradient descent.
Prior to this we shall rigorously define and characterize the shape gradient J ′(Ωd). Using the
adjoint technique this derivative is then expressed as J ′(Ωd)(θ) = − ω

I2

∫
Γ0

(νtθ)g δs where the
computation of the the function g involves the solution of the direct and the adjoint problem. In the
shape gradient formulae, θ represents the transformation field and ν stands for the outward normal.
The solutions of the adjoint problem is expressed with P and W as the magnetic vector potential
and the scalar electric potential respectively. The function g may have the form g = g11 + g21 in
the absolute mode or g = g11 − g22 in the differential mode, with

gkl =

∫ zmax

zmin

ℜ
(

(Z(ΩD; ζ) − Zmes(ζ))

{ [
1
µ

]
±

(ν · curlAk)(ν · Pl − ν · curlA0
l )

−[µ]±
(
ν × ( 1

µcurlAk × ν)
)

·
(
ν × ( 1

µcurlPl × ν) − ν × ( 1
µ0 curlA0

l × ν)
)

+ 1
iω [σ]±(iωAkτ + ∇τVk) · (iωPlτ + ∇τWl + iωA0

lτ + ∇τV
0
l )

})
dζ.

We shall present and compare two inversion strategies : the first one is based on a parametrized
regularization of the shape and the second one is based on a regularized descent direction.
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Inside-Outside-Duality and Interior Eigenvalues of Impenetrable
Scatterers

Stefan Peters
ZeTeM, Zentrum für Technomathematik, Universität Bremen, Germany
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Abstract: Direct and inverse scattering problems for impenetrable scatterers are connected to the interior
eigenvalues of scattering objects. Reconstruction methods like the linear sampling method or the factorization
method for example can fail at interior eigenvalues [1]. Therefore we introduce a method to rigorously
characterize the interior eigenvalues for either Dirichlet or Robin boundary conditions, using the far field
data of corresponding exterior scattering problems.
Keywords: Dirichlet/Neumann/Robin eigenvalues, Inside-Outside-Duality.

1 The Determination of Interior Eigenvalues from Far Field Data
In our model the scatterer D ⊂ R3 is a bounded Lipschitz-domain with connected complement. We want to
determine positive wave numbers k > 0 such that k2 is an interior eigenvalue of the negative Laplacian, i.e.
there exists a non-trivial solution of

∆u+ k2u = 0 in D, B(u) = 0 on ∂D,

where B(u) represents either Dirichlet conditions B(u) = u or Robin-boundary conditions B(u) = ∂u/∂n+τu
for a real-valued function τ ∈ L∞(D). Since we do not exclude the special case τ = 0, the case of Neumann-
boundary conditions is included in the following discussion. To determine the interior eigenvalues we consider
corresponding exterior scattering problems

∆u+ k2u = 0 in R3 \D, B(u) = 0 on ∂D.

The total wave field u can be split into a sum of an incident incoming plane wave ui(x, θ) = exp(ik θ · x)
with direction θ ∈ S2 = {x ∈ R3, |x| = 1} and a scattered field us(·, θ) that satisfies Sommerfeld’s radiation
condition. The scattered wave us(·θ) behaves like an outgoing spherical wave, such that it can be represented
by its far field u∞(x̂, θ̂). In particual the far field operator can now be defined as

F : L2(S2)→ L2(S2), Fg(x̂) :=

∫

S2
u∞(x̂, θ)g(θ) dS(θ), x̂ ∈ S2.

The farfield operator is compact and normal [1] and its eigenvalues λj lie on a circle of radius 8π2/k with
center 8π2i/k in the complex plane. We represent the eigenvalues in polar coordinates such that

λj = rj exp(iϑj), rj > 0, ϑj ∈ (0, π).

It can be shown that the eigenvalues λj converge to zero from the left for Dirichlet boundary condition and
from the right for Robin boundary conditions. Therefore the eigenvalue λ∗ with the smallest phase ϑ∗ is
well-defined for Dirichlet boundary conditions and the eigenvalue λ∗ with the largest phase ϑ∗ is well defined
for Robin boundary conditions.
Our main result in the following: k20 is an interior Dirichlet eigenvalue if and only if the smallest phase ϑ∗ of
the eigenvalue λ∗ of F converges to zero as k approaches k0 from below. Crucial tools we use in the process
are the eigenvalue decemposition of the far field operator F , its well-known factorization F = −G∗S∗G, the
denseness of the range of G in H1/2(∂D) and the behaviour of the kernel of S = S(k) with varying wave
number k. In the case of Robin-eigenvalues k20 is interior Robin eigenvalue if and only if the largest phase ϑ∗
of the eigenvalue λ∗ converges to π as k approaches k0 from above. To proof this assertion, we use a more
complex factorization of the far field operator and adapt the preceding arguments accordingly.
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2 Numerical Results
In order to verify our theoretical results, we created far field data using the software package BEM++ (see
[2]) to solve the arising boundary integral equations. As domains of computation we chose the unit ball B1(0)
and the unit cube C := [0, 1]3. As a result we obtained a matrix FN as a numerical approximation to the far
field operator F . In particular we obtained numerical approximations λNj and ϑNj to the eigenvalues λj and
its corresponding phases ϑj . Since we are interested in the behaviour of the smallest phase ϑ∗ in the case of
Dirichlet-boundary conditions and the behaviour of the largest phase ϑ∗ in the case of Neumann-boundary
conditions with varying wavenumber k, we plottet the phases ϑNj against the wavenumber k. The results can
be seen in the following graphs.
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Figure 1: Blue dots mark the phases ϑNj of the numerical eigenvalues λNj (k). Red circles on the k-axis mark
the exact positions of the smallest five interior eigenvalues. (a) Phases of the numerical eigenvalues for the
unit cube C and Neumann boundary conditions. (b) Only the largest phase from (a) was plotted. Vertical
red lines mark the smallest five interior Dirichlet eigenvalues. (c) Phases of the numerical eigenvalues for the
unit cube C and Dirichlet boundary conditions. (d) Only the smallest phase from (c) was plotted. Vertical
red lines mark the smallest five interior Dirichlet eigenvalues.

This method of determining interior eigenvalues can be used especially well in those cases, where either the
shape of the scattering object or the boundary condition of the scattering process is unknown. Furthermore
the multiplicity of the interior eigenvalues can be determined as well without any additional expenses.
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Estimation de paramètres dans une EDP elliptique 1D

Lahcène Chor�∗

Résumé : On étudie un problème inverse d'identi�cation de deux coe�cients dans une équa-
tion elliptique 1D à partir de données sur la solution. On étudira l'opérateur direct qui associe
aux coe�cients la solution du problème aux limites. Cet opérateur n'est pas injectif (lorsque les
coe�cients sont variables), on étudiera alors son inverse au sens des moindres carrés. Pour recons-
truire les coe�cients nous proposons l'algorithme de Gauss-Newton régularisé. A chaque itération
l'équation linéarisée est résolue par la méthode du gradient conjugué. Nous montrerons des résul-
tats numériques qui illustrent les di�cultés rencontrés dans un problème non linéaire mal posé.
Mots clés : Problèmes Inverses, Identi�cation de paramètres, Moindres carrés non linéaires.

1 Problème direct

Considérons le problème aux limites elliptique 1D suivant : Trouver u ∈ H2(0, 1), véri�ant :

(P )

{
Lu := −b(x)u′′ + c(x)u′ = f(x) pour x ∈]0, 1[
u(0) = 0, u′(1) = 0.

Les fonctions b, c sont supposées continues sur [0, 1] telles que b(x) ≥ b0 > 0 et c(x) ≥ 0. Le second
membre f ∈ L2(0, 1). Ce problème admet une solution unique donnée par l'intégrale

u(x) =

∫ 1

0

K(x, y)f(y)dy (1)

avec

K(x, y) =





[
1

λ(y) −
exp(Λ(0)−Λ(y))

λ(0)

]
1

b(y) si 0 ≤ y ≤ x[
1

λ(x) exp(Λ(x))−
expΛ(0)

λ(0)

]
exp(−Λ(y))

b(y) si x ≤ y ≤ 1

où λ(x) = c(x)
b(x) et Λ(x) =

∫ x

1
λ(y)dy.

Considérons l'opérateur direct Φ : U 7→ H1 qui associe au couple p ∈ U = {(b, c) ∈ C1[0, 1] ×
C[0, 1], b(x) ≥ b0 > 0, c(x) ≥ 0} la solution u de (P ). U est équipé de la norme ‖p‖ = ‖b‖C1+‖c‖∞.
On a le résultat de stabilité suivant.

Proposition 1.1 (i) Φ : U → H2(0, 1) est bornée sur chaque ensemble borné de U .
(ii) Φ est localement Lipschitzienne : si u1 = Φ(p1) et u2 = Φ(p2), alors

‖u1 − u2‖H1 ≤ C

b0
‖p1 − p2‖∞ (2)

Remarquons que l'opérateur Φ n'est pas injectif (sauf si les coe�cients (b, c) sont constants) comme
le montre l'exemple suivant. En e�et, si u(x) = x− x2

2 et f(x) = 2− x alors pour tout α ∈ R on
a :

−u′′ + u′ = (1− α+ αx)u′′ + (1 + α)u′ = f(x).
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2 Problème inverse

Etant donné le terme source f , il s'agit d'identi�er les coe�cients b et c d'après des observations
d sur la solution u. Considérons le cas d'une observation distribuée d = u. Si u ∈ H1(0, 1) cela
revient à inverser l'équation Φ(b, c) = u. Cette équation est mal posée d'après l'exemple suivant.
Soit la suite de fonctions un = x

n+
1
n2 (e

−n−en(x−1)), alors, pour tout n ≥ 1, on a−u′′n+nu′n = 1. On
voit que un converge vers zéro dans H1 alors que cn = n tend vers l'in�ni. Supposons maintenant
que la donnée n'est pas exacte i.e d = uδ ∈ L2(0, 1) avec ‖u − uδ‖ ≤ δ. On cherche alors une
solution au sens des moindres carrés, c'est à dire trouver p = (b, c) ∈ U qui minimise la fonction

coût J(a, b) =
1

2

∫ 1

0

(u− d)2dt, u = Φ(a, b).

2.1 Algorithme de Gauss-Newton

Le problème d'optimisation : pmin = argmin J(p), p = (b, c) ∈ U , est résolu par la méthode
de Gauss-Newton qui consiste à itérer la procédure suivante : p0 étant une approximation initiale,
pn+1 = pn + hn où hn est solution de l'équation

Φ′∗(pn)Φ
′(pn)hn = −∇J(pn) = −Φ′∗(pn)(Φ(pn)− d)

Cette équation est mal conditionnée, on l'a résout par gradient conjugué ([2],[1]). On montre que
la dérivée est donnée par Φ′(p;h, k) = (v, w) où (v, w) est solution du système :

{−bv′′ + cv′ = hu′′; −bw′′ + cw′ = −ku′} avec u = Φ(p).

2.2 Discrétisation et résultats numériques

La solution numérique du problème direct est obtenu par quadrature et collocation basée sur
l'intégrale (1), d'où u = R(p)f et u′ = S(p)f et u′′ = T (p)f avec des matrices du type (2n, n), n
étant le nombre de points de l'intervalle (0, 1). La matrice de Φ′(p) est donnée par :
A(p) = [R(p) o diag(u′′);−R(p) o diag(u′)]. Dans la �gure 1, on montre les résultats de la simula-
tion avec les données exactes suivantes : b(x) = 1+0.5 sin(πx); c(x) = 1+x−x2 et f(x) = x−x2,
(d = u = R(b, c)f). Nous montrerons aussi des résultats lorsque la donnée est perturbée (d = uδ).
On véri�era que l'algorithme est stable, par contre il est sensible à l'approximation initiale p0.

, ,

Fig. 1 � Reconstruction de b et c avec une donnée non bruitée (n = 100)
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Improving the mechanical performances of a multilayered

plate with the orientations of its layers of �bers

Mekki Ayadi∗ Asma Gdhami† Abderrahmane Habbal‡

Maroua Mokni§ Boutheina Yahyaoui¶

Abstract: We consider a symmetric composite multilayered plate whose �bers orientation
varies from one layer to another. The plate model used is that of Mindlin. We are interested
in determining the optimal �ber orientations that maximize, in the same time, two criterions:
the smallest eigenfrequency of vibration and the compliance or the smallest eigenfrequency of
vibration and the smallest buckling critical load. In order to only maximize one criterion of the
preceding ones, a metaheuristic algorithm of Simulated Annealing type is used. While, in the case
of maximizing two objective functions, the Pareto frond method is used. Numerical results for a
rectangular plate composed of four layers are presented.
Keywords: bending, free vibration, linear buckling, optimal orientations, compliance.

1 Introduction

We consider a multilayered composite plate which is symmetric with respect to its mid-plane,
of thickness 2ε, and composed of 2m layers of �bers whose orientation varies from one layer to
another, see �gure 1. Every layer of �bers is assumed to be homogeneous and orthotropic with
respect to its local coordinate system consisting of the �ber axis and its perpendicular. Hence, the
multilayered plate is homogeneous but anisotropic. It is desirable that the composite plate should
be very resistant and very light, but it should also be well suited to parametric optimization [1].
Indeed, in order to avoid the resonance of a structure under a given excitation, its eigenfrequencies
have previously been controlled by its mass (location of some masses in adequate places on the
plate). For a multilayered composite plate, we can also control the eigenfrequencies by its rigidity:
�nd the optimal orientations of the layers of �bers, θ∗ = (θ∗1 , θ

∗
2 , ..., θ

∗
m) ∈ [0, π]m, for which the

spectrum of eigenfrequencies does not intercept the set of excitation frequencies (such as those
corresponding to wind, earthquake, etc). The problem of maximizing the �rst eigenfrequency has
been tackled by many authors [2], [6] by using the topological optimization method. However,
in certain structure designs, such as the deck of a bridge, we are not allowed to create holes. In
that case, one can recourse to parametric optimization. Moreover, the multilayered plate should
be very resistant to buckling phenomenon, besides having a good bending rigidity. To do this,
we must maximize the smallest critical buckling load and minimize the compliance: the work of
uniform transverse load p, applied to the upper surface of the plate, in the vertical displacement.
Therefore, we are faced with a compromise.

In this paper, we deal with the three following problems. First, we maximize the smallest
eigenfrequency with respect to the orientations of layers of �bers. Second, we minimize the com-
pliance. Finally, we look for minimizing, in the same time, the compliance and the opposite of
the smallest buckling critical load since the smallest eigenfrequency and the compliance are not
competitive. For these purposes, Mindlin's plate model is considered, the six-node triangular �nite

∗ENIT�lamsin, mekki.ayadi@enis.rnu.tn,
†ENIT�lamsin, asmagdhami@yahoo.fr,
‡Univ, Nice Sophia Antipolis�CNRS, LJAD, habbal@polytech.unice.fr,
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element is used and the Simulated Annealing algorithm as well as the Pareto front method are
implemented.

2 Mathematical setting

Let

WM = {v = (v3, r1, r2) ∈ H1(ω)3; v3 = 0 on ∂ω}, (1)

be the space of kinematically admissible bending displacements, where v3 denotes the de�ection
of the plate, r1 and r2 denote the rotations of its mid plan, and HM = L2(ω)3. Let

V = {v = (v1, v2) ∈ H1(ω)2; v1 = 0 on γ0}, (2)

be the space of kinematically admissible membrane displacements, where vα, α = 1, 2, denote the
displacements in the plane of the plate, and γ1 is a portion of the boundary whose measure is not
zero.
Let us now de�ne the bilinear form aM (R(θ)., .) by: ∀u = (u3, η1, η2), v = (v3, r1, r2) ∈WM ,

aM (R(θ)u, v) =

∫

ω

Dαβµν(θ)∂νηµ∂βrαdω +

∫

ω

Gαβ(θ)(∂βu3 + ηβ)(∂αv3 + rα)dω, (3)

and the bilinear form a(R(θ)., .) by: ∀u = (u1, u2), v = (v1, v2) ∈ V,

a(R(θ)u, v) =

∫

ω

Eαβµν(θ)∂νuµ∂βvαdω, (4)

The uniform WM -ellipticity of aM and the uniform V -ellipticity of a are shown in [3]. On the
space HM , we de�ne the inner product:

(u, v) =

∫

ω

(
2ε3

3
ηαrα + 2εu3v3)dω, ∀u = (u3, η1, η2), v = (v3, r1, r2) ∈ HM , (5)

whose associated norm is equivalent to that of L2(ω)3.
The free vibration problem is governed by the the following eigenvalue problem (λ(θ) = $2(θ)).

aM (R(θ)w(θ), v) = λ(θ)(w(θ), v) ∀v ∈WM . (6)

The maximizing problem of the smallest eigenfrequency is

max
θ∈[0,π]m

λ1(θ) where λ1(θ) = min
v∈WM\{0}

aM (R(θ)v, v)

(v, v)
= aM (R(θ)w1(θ), w1(θ)). (7)

The maximizing problem of bending rigidity is

min
θ∈[0,π]m

∫

ω

pu3(θ)dω where aM (R(θ)u(θ), v) =

∫

ω

pv3dω ∀v ∈WM . (8)

The plate being submitted to a plane load gα, α = 1, 2, the membrane problem is

a(R(θ)ug, v) =

∫

γ1

gαvαdγ ∀v ∈ V with membrane e�ort tensor ngαβ = Eαβµν(θ)∂νu
g
µ. (9)

The linear buckling problem is governed by the following eigenvalue problem [3].

aM (R(θ)w(θ), v) = δ(θ)b(w(θ), v) ∀v ∈WM where b(w, v) =

∫

ω

1

2
ngαβ(∂αw3∂βv3 + ηαrβ)dω.

(10)

The maximizing problem of buckling rigidity is

max
θ∈[0,π]m

δ1(θ) where δ1(θ) = min
v∈WM\{0}

aM (R(θ)v, v)

b(v, v)
= aM (R(θ)w1(θ), w1(θ)). (11)
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3 Numerical results

We consider a rectangular plate of thickness 8 mm, occupying a two dimensional domain ω =
[−0.1, 0.1]× [−0.05, 0.05] and composed of four layers of carbon �bers assumed to be orthotropic.
The material has density ρ = 1000 kg/m3 and the following mechanical properties: E1 =
14.000e + 010 Pa is the Young's modulus in the direction of �bers, E2 = 1.000e + 010 Pa is
the Young's modulus in the perpendicular direction, ν12 = 0.31 is the Poisson's coe�cient, and
G12 = G13 = G23 = 57.000e + 08 Pa are the coe�cient of plane shear and the transversal shear
coe�cients, respectively.
Using the simulated annealing algorithm [5], we obtain the following results.

-Smallest eigenfrequency

Also reached in(θ1, θ2, θ2, θ1) = (π2 ,
π
2 ,

π
2 ,

π
2 ), the maximum is equal 6.7785e+ 8 N/m4.

-Compliance

Reached in (θ1, θ2, θ2, θ1) = (π2 ,
π
2 ,

π
2 ,

π
2 ), the minimum compliance is equal 2.6071e− 12 N.m.

-Smallest buckling critical load

Reached in (θ1, θ2, θ2, θ1) = (0.4443, 0.4443, 0.4443, 0.4443), the maximum is equal 5.8587e+6 m,
while the minimum is reached in (π2 ,

π
2 ,

π
2 ,

π
2 ).

We observed that the two �rst criteria are not competitive, while the two last criteria are compet-
itive as exemplify the Pareto front [4] given by �gure 2.

4θ

3θ

2θ

1θ

z

y

x

Figure 1: A multilayered rectangular plate with di�erent orientations of layers of �bers.

Figure 2: Pareto front for the compliance and the opposite of the smallest buckling critical load.
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Stabilized finite elements for curved fibred plates

Aymen Mannai∗

Abstract: The solution of the most problems in thin structures using the classical finite
elements methods isn’t robust, since it is a subjected to numerical loking phenomenon. It was
proved in [1] that it is the case for fibred plates.
An analysis was done to avoid this phenomenon in the plane plates case. We want to extend this
work to the case of curved plates.

Keyworlds: Stabilized finite elements,

1 Energetic model :

The system energy is, in the general case, the sum of three energy contributions, namely
Gum energy : characterised by the energy’s density 𝑤𝑔𝑢𝑚, fiber energy characterised by the en-

ergy’s density 𝑤𝑐𝑎𝑏 and coupling energy characterised by the energy’s density 𝑤𝑐𝑜𝑢𝑝. The expresion
of total energy is

E𝑝𝑙𝑎𝑡𝑒 = E𝑔𝑜𝑚 + E𝑐𝑎𝑏 + E𝑐𝑜𝑢𝑝

= E𝑔𝑜𝑚 + E𝑚𝑏
1 + E𝑓𝑙 + E𝑐𝑜𝑢𝑝

= E𝑔𝑜𝑚 + E𝑐𝑜𝑢𝑝

∫
𝑃
𝜔𝑐𝑎𝑏(𝑢, 𝑣) +

∫
𝑃
𝜔𝑐𝑜𝑢𝑝(𝑑3)

,

where E𝑚𝑏 is the menmbrane part energy and E𝑓𝑙 is the flexion part energy of the fibres. The
potential energy is:

J(𝑥, 𝑟, 𝑑𝑖) = E𝑝𝑙𝑎𝑡𝑒 −

�

𝑃

𝑓 ⋅ 𝑟𝑑𝜉𝛼,

where 𝑓 is the external load, 𝑥 is the 3D mouvement of plate, 𝑟 is the fibers centerlines and and
𝑑𝑖{𝑖=1,2,3} the directors defined both at each point 𝑚 of the plate’s midsurface.

The main problem is to find the minimum of the potential energy in the space K𝑜𝑟𝑡 given by:

K𝑜𝑟𝑡 =

�
(𝑥, 𝑟, 𝑑𝑖) ∈ K; ∀(𝜉1, 𝜉2) ∈ 𝑃 , 𝑟(𝜉1, 𝜉2) = 𝑥(𝜉1, 𝜉2, 0) , 𝑑𝑖(𝜉1, 𝜉2) ⋅ 𝑑𝑗(𝜉1, 𝜉2) − 𝛿𝑗,𝑗 = 0
, (𝑥, 𝑟, 𝑑𝑖) verifies the boundary conditions selected

�
,

(1)
where

K =
�
(𝑥, 𝑟, 𝑑𝑖) ∈ ((𝐻1(Ω))3 × (𝐻1(𝑃 ))3 × ((𝐻1(𝑃 ))3)3 ∀(𝜉1, 𝜉2) ∈ 𝑃 , 𝑟(𝜉1, 𝜉2) = 𝑥(𝜉1, 𝜉2, 0)

}

(2)
where 𝑃 is an open set of ℝ2 and Ω is an open set of ℝ3

2 2D problem

In order to simplify our analysis, the 3D-problem is approached by a 2D-problem posed on the
mid surface of the plate has discribed by the fonctional energy:

E𝑝𝑙𝑎𝑡𝑒(𝑟, 𝑑𝑖) =

�

𝑃

∑

𝑖,𝑗

𝛼𝑖,𝑗(𝑑𝑖,1 ⋅𝑑𝑗)
2 +

�

𝑃

∑

𝑖,𝑗

𝛽𝑖,𝑗(𝑑𝑖,2 ⋅𝑑𝑗)
2 +

�

𝑃

𝜃𝑖(𝑟
′ ⋅𝑑𝑖)

2 +

�

𝑃

𝜔2𝐷
𝑔𝑜𝑚(𝑟, 𝑑𝑖), (3)

where 𝛼𝑖,𝑗 , 𝛽𝑖,𝑗 and 𝜃𝑖 are positive integrable and bounded coefficients.
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2.1 Classical finite elements method :

The problem of non-inhibited flexion fibered plate is non linear. By usig Newton method, the final
problem is reduced to find:

𝑈𝜀
ℎ = (𝛿𝑟𝜀ℎ, 𝛿𝑑𝜀𝑖,ℎ) ∈ 𝑑K̃

𝑜𝑟𝑡

ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

{
A(𝑈𝜀

ℎ,𝑈ℎ) + 𝜀−2A𝑚𝑏(𝑈
𝜀
ℎ,𝑈ℎ) = F0(𝑈ℎ)

∀ 𝑈ℎ ∈ 𝑑K̃
𝑜𝑟𝑡

ℎ

(4)

Here the orthogonal condition is limited to nodes of mesh,

𝑑K̃
𝑜𝑟𝑡

ℎ =
�
(𝛿𝑟, 𝛿𝑑𝑖) ∈ (H1(𝑃 ))2 such that ∀ 𝑒 ∈ [1,𝑁𝐸ℎ] (𝛿𝑟𝑖, 𝛿𝑑𝑖𝑗) ∈ (Q2(𝐼

𝑒
ℎ))2

}
. (5)

𝐴𝑚𝑏 is the linerized membrane energy portion and 𝐴 is the linerized remaining term of the total
energy.

The error estimate is given by:

∃C > 0, ∀ 𝜀 > 0, ∣∣ 𝑈𝜀 − 𝑈𝜀
ℎ ∣∣

K̃
≤ C𝜀−2 inf

𝑈∗∈𝑑K̃ℎ

∣∣𝑈𝜀 − 𝑈∗ ∣∣
K̃

2.2 Stabilized finite elements for curved fibred plates

In order to obtain a uniform error estimate independent of 𝜀, we will introduce, like in [1], a mixed
formulation. We will choose a suitable finite elements spaces and build an orthogonal projection
operator. The mixed formulation is given by:

𝐹𝑖𝑛𝑑 {(𝛿𝑟, 𝛿𝑑𝑖); 𝑝} ∈ 𝑑K̃ℎ × (L2
ℎ(𝑃 ))3 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀ [(𝑟, 𝑑𝑖); 𝑝] ∈ 𝑑K̃ℎ × (L2

ℎ(𝑃 ))3 𝑤𝑒 ℎ𝑎𝑣𝑒

{
A[(𝛿𝑟, 𝛿𝑑𝑖); (𝑟, 𝑑𝑖)] + B[𝑝; (𝑟, 𝑑𝑖)] = 𝐿( 𝑟, 𝑑𝑖) )

B[𝑝; (𝛿𝑟, 𝛿𝑑𝑖)] − 𝜀2C[𝑝; (𝑟, 𝑑𝑖)] = M( 𝑝 )
,

(6)
where

A : 𝑑K̃0 × 𝑑K̃0 → ℝ

((𝛿𝑟, 𝛿𝑑𝑖), (𝑟, 𝑑𝑖)) → (𝛿𝑟, 𝛿𝑑𝑖)
∂2

Ẽ0

∂(𝑟,𝑑𝑖)2
(𝑟, 𝑑𝑖) + 𝑐0

∫ ∫
𝑃

(𝛿𝑟′ ⋅ 𝑑𝑖 + 𝑟′ ⋅ 𝛿𝑑𝑖)𝐾
0
𝑖,𝑖(𝑟

′ ⋅ 𝑑𝑖 + 𝑟′𝑑𝑖)

+ 𝑐0
∫ ∫

𝑃
𝑟′ ⋅ 𝑑𝑖 𝐾

0
𝑖𝑖(𝑟

′ ⋅ 𝛿𝑑𝑖 + 𝛿𝑟′ ⋅ 𝑑𝑖)

B : (L2(𝑃 ))3 × 𝑑K̃0 → ℝ

(𝑝; (𝑟, 𝑑𝑖)) →
∫
𝑃
𝑝𝑖(𝑟

′
𝑖 ⋅ 𝑑𝑖 + 𝑟′𝑖 ⋅ 𝑑𝑖) 𝑑𝜉𝛼

C : (L2(𝑃 ))3 × (L2(𝑃 ))3 → ℝ

( 𝛿𝑝 , 𝑝) →
∫
𝑃

( 𝑝𝑖K
−1
𝑖𝑖 𝛿𝑝𝑖) 𝑑𝜉𝛼

L : 𝑑K̃0 → ℝ

(𝑟, 𝑑𝑖) →
∫
𝑃
𝑟 ⋅ 𝑓 + ∂𝐸̃0(𝑟,𝑑𝑖)

∂(𝑟,𝑑𝑖)
⋅ (𝑟, 𝑑𝑖) − 𝑝𝑖(𝑟

′ ⋅ 𝑑𝑖 + 𝑟′ ⋅ 𝑑𝑖)𝑑𝜉𝛼

M : (L2(𝑃 ))3 → ℝ

𝑝 → 𝜀2
∫
𝑃
𝑝𝑖K

−1
𝑖𝑖 𝑝𝑖 +

∫
𝑃

𝑝𝑖(𝑟
′ ⋅ 𝑑𝑖 − 𝑣𝑖0 )𝑑𝜉𝛼.

and 𝑐0 is positive constant.
The finite elements spaces in which we discretize 𝛿𝑟 and 𝛿𝑑𝑖 are given successively by:

𝒱ℎ =
�
𝛿𝑟 ∈ H1(𝑃 ) tel que ∀ 𝑒 ∈ [1,𝑁𝐸ℎ] 𝛿 𝑟𝑖 ∈ Q2 + B̄2(𝐼

𝑒
ℎ) + B0

2(𝐼
𝑒
ℎ)

}
. (7)

MANNAI AYMEN AND SALOUA AOUADI 176



𝒲ℎ =
�
𝛿𝑑𝑖 ∈ H1(𝑃 ) tel que ∀ 𝑒 ∈ [1,𝑁𝐸ℎ] 𝛿 𝑑𝑖𝑖 ∈ Q2 + B0

2(𝐼
𝑒
ℎ)

}
. (8)

We obtain the following error estimate:

∣∣𝛿𝑟 − 𝛿𝑟ℎ∣∣𝒱ℎ
+ ∣∣𝛿𝑑𝑖 − 𝛿𝑑𝑖ℎ∣∣𝒲ℎ

+ ∣∣∣𝑝 − 𝑝ℎ∣∣∣W + 𝜀∣∣𝑝 − 𝑝ℎ∣∣W
≤ Cinf{𝛿𝑟 ∈ 𝒱ℎ, 𝛿𝑑𝑖∈𝒲ℎ 𝑞 ∈ (L2

ℎ
(𝑃 ))3}(∣∣𝛿𝑟 − 𝛿𝑟ℎ∣∣𝒱ℎ

+ ∣∣∣𝑝 − 𝑞∣∣∣𝒲 + 𝜀∣∣𝑝 − 𝑞∣∣W
(9)
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3.5 Optimization and data assimilation (ODA)





Assimilation d'un déplacement de dunes de type Barkhane

Lamia Jaafar Belaid
∗

Walid Mourou
†

Abstract: This paper deals with a new application of data assimilation for a moving sand
dunes of Barchans kind. Observations are derived from a series of satellite images using a segmen-
tation approach based on watersheds. The simulations were made using a nudging technique.
Keywords: Barchans, nudging, segmentation, watersheds.

Résumé : Une application d'assimilation de données pour le déplacement de dunes de type
Barkhanes est proposée. Les observations dérivent d'une série d'images satellites suivant une ap-
proche de segmentation basée sur la technique de la ligne de partage des eaux. Les simulations
ont été réalisées en utilisant une technique de nudging.
Mots clés : Barkhanes, nudging, segmentation, ligne de partage des eaux.

1 Les dunes Barkhanes

Dans la nature, plusieurs formes de dunes de sable se présentent. On peut citer les dunes en
étoiles, en rides, en vagues, nebka, ect. Nous nous intéressons dans notre travail aux dunes de type
Barkhanes, voir Figure 1. Les Barkhanes se forment dans des milieux désertiques où le vent sou�e
en moyenne dans une seule direction tout au long de l'année avec une faible présence de sable. Ces
formes sont assez présentes au sud des pays du Maghreb.

Figure 1 � Serie d'images satellites de deux Barkhanes à Tarfaya, Maroc (Google Earth).

Soit h(x, y, t) le relief de la dune qui varie en temps et en espace selon l'équation de conservation
de masse [3]. En notant par q le �ux de matière emportée et par qs le �ux saturé après une distance
parcourue ls, on donne les équations d'évolution suivantes





∂h

∂t
= − 1

ρsable

∂q

∂x
∂q

∂x
=
qs − q
ls

qs
q

= 1 +A
1

π

∫ +∞

−∞

h
′
e

x− ξ dξ +Bh
′
e,

(1)

où ρsable désigne la densité moyenne du sable et A,B sont des constantes liées au modèle. Le
calcul des perturbations du vent est fait à travers une surface he(x, y). Cette enveloppe prolonge
le pro�l de la dune en amont de façon à satisfaire les conditions de régularité C1.
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2 Segmentation d'images

On considère une série d'images satellites de dunes. En général, ce type d'observations satellites
permet d'identi�er le type de dunes de sable (des Bakhanes dans notre cas), et de suivre leur
évolution durant une période donnée. La dimension des dunes est extraite à partir d'une technique
de segmentation d'images, comme le montre la �gure 2. Cette technique est basée sur l'approche
de la ligne de partage des eaux, combinée à une méthode de restauration d'images par gradient
topologique, [4].

Figure 2 � Extraction des dunes à partir de l'image satellite.

Pour l'étape d'assimilation, les observations sont les reliefs 3D (hobs) des dunes pour des di�é-
rentes dates {τ1, .., τp}. Nous utiliserons une approximation morphologique déduites des études des
Barkhanes pour estimer leur hauteur H = aWL +b. Les paramètres a et b dépendent essentiellement
de l'endroit géographique et de la nature des grains de sable.

3 Assimilation

L'assimilation des données consiste à combiner de façon optimale toutes les sources d'informa-
tions disponibles sur un système dynamique pour en faire la prévision. Trois grandes classes de
méthodes d'assimilation se présentent dans la littérature scienti�que : l'assimilation séquentielle
[1], l'assimilation variationnelle et le nudging [2]. Le nudging consiste à rajouter à l'équation du
problème initial, un terme de régularisation K(hobs − h) (un terme de rappel aux observations).{

dh

dt
= Ah+K(hobs − h)δtτ , 0 < t < T, τ ∈ {τ1, .., τp},

h(t = 0) = h0,
(2)

où K désigne la matrice de nudging. On donne dans la �gure 3, l'assimilation de l'évolution d'une
Barkhane suite à deux observations.

Figure 3 � Assimilation du déplacement d'une Barkhane selon deux observations.
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VARIATIONAL DATA ASSIMILATION WITH YAO PLATFORM 

FOR THE CALIBRATION OF A HYDROLOGICAL MODEL 

Amara ABBARIS
1
, Hammouda DAKHLAOUI

2,3
,  

Sylvie THIRIA
1
, Zoubeida BARGAOUI

2 

Abstract In this study a data assimilation based on Variational assimilation was implemented with HBV Rainfall-Runoff 

model by the mean of YAO platform of University Pierre and Marie Curie (France). The principle of the Variational 

assimilation is to consider the model state variables and/or model parameters as control variables and optimise them by 

minimizing a cost function measuring the disagreement between observations and model simulations. The Variational 

assimilation is used for the calibration of the HBV hydrological model. In this case the 14 model parameters are considered 

as control variables and optimised by minimizing the Nash criterion as cost function.  Results are compared to those obtained 

by the well known powerful optimisation algorithm SCE-UA. To draw the calibration, parameters were divided into different 

sensitivity groups. A multistep calibration strategy was implemented beginning by the calibration of the most sensitive 

parameters and ending by the less sensitive. Two basins that belong under different climate: Sejnène from Tunisia, and Serein 

from France are studied. A Very good comparison is obtained with SCE-UA results in terms of Nash performance. 

Key words: Variational assimilation, YAO, HBV model, Hydrological forecasting, optimisation, SCE-UA 

1. Methods and Tools: 
1.1  The HBV Rainfall-Runoff Model 

The HBV model (Begström, 1976) is one of the most successful conceptual rainfall-runoff models that 
has been applied in more then 30 countries (Lindstrom et al., 1997). In the current study, a lumped modelling is 
adopted. The main model outputs are daily mean flows (m3/s) as well as daily actual evapotranspiration 
(mm/day). The principal water balance components of the HBV model are snow accumulation and melt, actual 
evapotranspiration and infiltration evaluation, soil humidity evolution, and water transfer through soil (Fig. 1).  
Further description of HBV model version used in this study could be found in Dakhlaoui & Bargaoui (2013). 
The model includes several state variables evolving continuously and that decide the flows values.   
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Fig. 1  HBV Model Structure 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 
 
 
 

Fig. 2  Strategy of calibration of HBV model by Variational 
Assimilation,In each box are mentioned the parameters to be 

calibrated in the step, the other parameters are fixed 
 

1.2 Variational assimilation 
Variational assimilation (4D-VAR) (Le Dimet et al., 1986) considers a physical phenomenon described in 

space by one, two or three dimensions and its time evolution. It thus requires the knowledge of a direct 
dynamical model M, which describes the time evolution of the physical phenomenon.  
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M allows connecting the geophysical variables studied with observations. By varying some geophysical 
variables (model parameters), assimilation seeks to infer the physical variables that led to the observation values. 
The basic idea is to determine the minimum of a cost function J that measures the misfits between the 
observations and the model estimations. Due to the complexity related to the non-linearity of this function, the 
desired minimum is classically obtained by using gradient methods, which implies the use of the tangent linear 
and the adjoint models of M. The latter and the former are derived from the equations of the direct model M. The 
adjoint model estimates changes in the control variables in response to a disturbance of the output values 
calculated by M (here HBV equations). It is therefore necessary to proceed in the backward direction to tangent 
linear calculations, which means to use the transpose of the Jacobian matrix. When observations are available, 
the adjoint allows to minimize the function J, and to find the values of the control variables. 

1.3 YAO  
YAO provides a framework helping the implementation of the adjoint model using a programming based 

on a general formalism decomposition of complex systems into modular graph (Nardi et al., 2009, 
http://www.locean-ipsl.upmc.fr/~yao/). The graph is composed of modules connected together by nodes and 
representing the numerical model. Each module is composed of an elementary function specific to the dynamic 
model, which is differentiable. YAO compiles and generates an executable that can compute the direct model M, 
the tangent linear model M and the adjoint model Mt. An interface with a quasi Newton optimiser is used to 
minimize the cost function. 

2. Methodology 
2.1 Calibration of HBV model with SCE-UA-KNN 

The calibration consists on determining suitable model parameters values that give the best reconstitution 
of observed runoff by the model giving the observed rainfall data and air temperature data as inputs. The 
calibration of rainfall-runoff model could be considered as an optimization problem stated as follows: 

Min {FO (qoi, qci,θ) , i=1,n }                (1) 
  θ  
with: n : number of time steps or observations  qoi : observed runoff at time step i; i=1,… n. 
         qci  : simulated runoff at time step i; i=1,… n.  θ:  model parameters      FO: objective function. 
It minimizes over θ, several performance model criteria that reflect the degree of similarity between 

observed and simulated runoff series. Generally distance based measures are involved also taking account for 
model errors heteroscedasticity. In this paper we selected the Nash-Suttclife as calibration criterion (Nash and 
Sutcliffe, 1970).  

Nash=1-

∑

∑

=

=

−

−
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qq

qq
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2

1

2

)(
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The Shuffled Complex Evolution of the University of Arizona (SCE-UA) (Duan et al., 1993) global 
optimisation method is recognised as one of the most effective optimisation algorithms applied to achieve 
rainfall runoff model calibration (Gupta et al., 1999; Thyer et al., 1999). Despite the fact that it is efficient and 
effective, the SCE-UA is time consumer when applied to the calibration of rainfall-runoff models. In fact it 
needs a great number of objective function evaluations to reach the optimal solution (Tolson and Shoemaker, 
2007) especially in the case of a huge number of parameters to be calibrated. Dakhlaoui et al. (2012) proposed a 
hybrid version of SCE-UA that adopts the K-Nearest Neighbours (KNN) to approximate the objective function: 
SCE-UA-KNN. This enhanced optimisation algorithm was found to be two to three times faster than original 
SCE-UA with conserving the same rate of effectiveness. It was adopted in this study to calibrate HBV model. 

2.2  Calibration of HBV model with variational assimilation :  
The HBV model has a huge number of parameters to be calibrated. The calibration of all these parameters 

simultaneously can give a high dimension problem which is not evident to be resolved. We propose in this study 
a specific strategy to calibrate the model parameters by dividing them into 4 groups with respect to their 
sensitivity to the objective function (Nash). The calibration is performed separately for each group beginning by 
the most sensitive parameters and finishing by the less sensitive. This loop is repeated until convergence (Fig. 5). 

3. Results and Discussion 
3.1  Calibration with  SCE-UA-KNN and validation 

The HBV model was calibrated, firstly with the hybrid SCE-UA-KNN optimisation algorithm (Dakhaloui 
et al., 2012) for two catchments (Sejnène and Serein). The calibration period was from September 1964 to 
August 1967 for Sejnène and from January 1998 to December 2002 for Serein. The validation periods were from 
January 2008 to Mars 2010 for Serein and from September 1967 to August 1969 for Sejnène (Table 2). The 14 
model parameters were considered simultaneously in the calibration process. It is concluded that satisfactory 
model performances are achieved. In fact, the Nash-Suttclife criterion is about 0.85 for Serein, 0.80 for Sejnène. 
The plots of the time series of observed and simulated runoff illustrate the good quality reconstitution of flows 
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(Fig. 3 and 4). There is little difficulty for the model to reconstitute the peak flows. The disparity found in 
parameter values within studied catchments may reflect the difference in climate, geology, soil and vegetation 
specific conditions. It may also be due to scaling effects of basin area. For the validation period model conserves 
a high performance in the case of Serein, with similar Nash criterion values as found in calibration period. For 
Sejnène there is an important deterioration of Nash criterion that decrease to 0.61 (which is still acceptable). 

 

 
Fig 3. Evolution of streamflow at the outlet of the Serein for calibration  period (2000). Solid line corresponds to 

measured streamflow, dash dotted line to simulated streamflow.  

 
Fig 4. Evolution of streamflow at the outlet of the Sejnène  for calibration  periond (1964-1965). Solid 

line corresponds to measured streamflow, dash dotted line to simulated streamflow. 
 

3.2  Calibration with Variational assimilation and validation 
The HBV model was calibrated with the Variational assimilation for the two studied catchments. The 

plots of the time series of observed and simulated runoff reflect the high quality of the reconstitution of flows 
(Fig.3 and 4). The Nash-Suttclife criterion is about 0.85 for Serein, and 0.80 for Sejnène. As in the case of SCE-
UA, there is also little difficulty for the model to reconstitute the peak flows. For both methods, it is found that, 
in the validation period, the model conserves its high performance for Serein while deteriorates for Sejnène (with 
the same Nash=0.61). For Serein catchment, the Nash quality is not deteriorated in validation.  

4. Conclusion 
YAO is a very flexible and powerful tool for developing assimilation procedures; it allowed us to apply 

Variational assimilation for calibrating HBV model. The calibration of HBV model was not an easy exercise for 
Variational assimilation. We were constrained to use a specific strategy to calibrate the 14 parameters of HBV 
model. The model parameters were adjusted separately group by group. The parameters groups were selected 
according their sensitivity to Nash. In term of performance, similar results were obtained by SCE-UA and 4D-
Var. However, some (optimal) model parameters were very different. In term of efficiency, the variational 
assimilation seems to be less time consumer then SCE-UA. 
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Proper orthogonal decomposition in cardiac electrophysiology
Lassoued jamila ∗ Mahjoub moncef † Zemzemi néjib ‡

Abstract:

A reduced-order model based on Proper Orthogonal Decomposition (POD) is proposed
for the monodomain equations of cardiac electrophysiology. In this work we propose to evaluate
the accuracy of this method while changing different parameters in the model. We first build
the reduced order model using a set of parameters, afterwards, we evaluate the accuracy of the
reduced model by changing the parameters of the ionic model model. The main goal of this study
is to evaluate the usefulness or the unusefulness of the POD in the parameter estimation problem.

Keyworlds: Cardiac electrophysiology, reduced-order model, POD, ionic parameters.

1 Modelling
1.1 Electric model
We use the moodomain model to describe the propagation of the electrical wave in the heart. The
model consists of a reaction-diffusion PDE, where the reaction term is linked to a dynamic system
representing the cell activity. The heart is supposed to be isolated from the external environement.
The coupled PDE/ODE system is described by the following equations [4]:





χm
∂Vm

∂t
+ Iion(Vm, w)− div(σ∇Vm) = Iapp in ΩH × (0, T )

∂w

∂t
+G(Vm, w) = 0 in ΩH × (0, T )

σ∇Vm.n = 0 on Σ.

(1)

where ΩH and Σ denote respectively the heart field and heart thorax interface. The time domain
is given by [0, T ]. And χm the membrane capacitance per area unit. The variable Vm denote
the action potential, and σ is the bulk conductivity. The term Iapp is a given external current
stimulus, w represents the concentrations of different chemical species, and variables representing
the openings or closures of some gates of the ionic channels. And the ionic current Iion and the
function G(Vm, w) depends on the considered ionic model.
∗ENIT–lamsin, lassoued.jamila@gmail.com,
†ENIT–lamsin, moncef.mahjoub@lamsin.rnu.tn ,
‡INRIA Bordeaux Sud-Ouest, nejib.zemzemi@inria.fr,
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1.2 Numerical results
To solve numerically the simplified model in the heart given by (1) we follow the procedure
explained in [1] , After a variational formulation and a time discretization, we obtain:





wn+1 = wn − δtG(V n
m, w

n+1) = 0 inΩH

χm

∫
ΩH V

n+1
m φ+ δt

∫
ΩH σ∇V

n+1
m ∇φ = χm

∫
ΩH V

n
mφ

+δt
∫

ΩH (In+1
app − Iion(V n

m, w
n+1))φ ∀ φ ∈ Hn(ΩH)

(2)

Using the finite element method, we obtain the space discretization of the variational formu-
lation follows:





wn+1 = wn − δtG(V n
m, w

n+1) inΩH

χmMV n+1
m + δtKV n+1

m = χmMV n
m + δtM(In+1

app − Iion(V n
m, w

n+1))
(3)

M = (
∫

ΩH
eiej)i,j=1,··· ,n and K = (

∫

ΩH
σ∇ei∇ej)i,j=1,··· ,n

where M is the Mass matrix, and K is the stifness matrix, and Iion(Vm, w), G(Vm, w) depends
on the ionic model used.

In this study, the dynamics of w and Iion are described by the phenomenological two-variable
model introduced by Mitchell and Schaeffer [2]. then The dynamics of w and Iion are described
by:

Iion(v, w) = w

τin
v2(v − 1)− w

τout

G(v, w) =





w − 1
τopen

si v > vgate

w

τclose
si v > vgate

(4)

2 Reduced order method
The proper orthogonal decomposition (POD)(see [3, 5]) is a linear process aiming to determine
an optimal orthogonal basis in the sense of energy. This means that there is no base capable to
capture higher amount of energy with the same number of modes. The POD basis is computed
using the Truncated Singular Value Decomposition (SVD) procedure performed on a precomputed
solution. This solution is computed for a given set of parameters. We are concerned about what
happens when this POD basis is used to solve the same problem but with different parameters.
Our investigation is restricted to the characteristic times of gate opening and closing respectively
τclose, τopen and the constants time τin, τout respectively related to the length of the depolarization
and repolarization (final stage) phases.

3 Numerical results
We constructed a POD basis using the original values of the ionic model parameters. Then, we
variate each of the parameters between half and three halfs its original value. We look at the error
between the reduced order solution and the full finite element solution. The figures below show
the L2 relative error in time and space between the full finite element solution and the reduced
order solution for different set of parameters.

JAMILA LASSOUED, MONCEF MAHJOUB AND NEJIB ZEMZEMI 188



100 150 200
10−4

10−3

τclose value

er
ro

r

60 80 100 120 140 160 180

10−3.2

10−3

10−2.8

τopen value

er
ro

r

Figure 1: Left: The error between the finite elements solution and the POD solution when the value of
the paramerter τclose vary . Right: The error between the finite elements solution and the POD solution
when the value of the paramerter τopen vary.
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Figure 2: Left: The error between the finite elements solution and the POD solution when the
value of the paramerter τin vary. Right: The error between the finite elements solution and the
POD solution when the value of the paramerter τout vary.

From these figures, we remark that the error remains too small (less than 1%) when changing
τclose, τopen and τout. While, for τin, the relative error increase considerably when the distance
between the value of parameters and the original value increases. The main conclusion of this
study is that in case of parameter estimation framework it is recommended to use the POD in
order to estimate τclose, τopen and τout. But to estimate τin, the data from which the POD basis
is computed should be sufficiently rich in order to maintain a good accuracy of the results.
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Continuation methods and Nesterov optimisation techniques for

general structured sparse learning

Hadj Selem Fouad ∗

(joint with Tommy Löfstedt, Edouard Duchesnay, Vincent Frouin and Vincent Guillemot)

Keyworlds: convex nonsmooth optimisation; structured learning.

1 Introduction

Machine Learning methods applied to the analysis of high-dimensional data are often required to use complex
penalties either inducing sparse models or making possible to take the structure of the variables into account.
Such penalties help to regularise the optimisation problem and at the same time yield models that are more
interpretable. We present a framework to combine one or several non-smooth convex penalties, such as for
example the `1-norm or a Total Variation penalisation, with a smooth convex objective function, such as the
ordinary least squares loss.

2 Method
Let us consider the constrained optimisation problem

min
β∈Rp

f(β) = min
β∈Rp

{g(β) + γs(β) + κh(β)} , (1)

where g is a differentiable convex function with a Lipschitz continuous gradient, h is a convex non-differentiable
function with a known proximal operator, s is an additional convex non-differentiable structured penalty whose
proximal operator is not necessarily known or is difficult to express or compute, and κ and γ are regularisation
parameters belonging to R+. This class of optimisation models is very general and includes classical models
such as LASSO, Ridge and Elastic Net, the less common TV and group LASSO. In the general case, when
the functions are not separable, the computation of the proximal operator is difficult if possible at all. We
therefore propose to apply Nesterov’s smoothing technique to approximate s and consequently be left with the
remaining non-differentiable part of the function g with a known and easy to compute proximal operator. From
this regularisation arises a new optimisation problem, closely related to the one given in Eq. (1), namely

min
β∈Rp

f̃(µ, β), with f̃(µ, β) = g(β) + κh(β) + γsµ(β), (2)

problems like those in Eq. (2) can be solved by iterative methods such as FISTA (Beck and Teboulle 2009)
which is chosen because of its fast convergence rate governed by:

f̃(µ, β(k))− f̃(µ, β∗µ) ≤ 2

tµ(k + 1)2
‖β(0) − β∗µ‖22, (3)

where k ≥ 0 is the iteration number and tµ is the time step that must be chosen smaller or equal to the inverse
of L(∇g + γ∇sµ):

tµ =
1

L(∇(g)) + γ
‖As‖22
µ

. (4)

It should be noticed that µ and tµ are linked to one another and vary in the same way, although they drive
different aspects of the algorithm convergence. Indeed, if µ is small the algorithm will converge with a high
precision and if tµ is large it will converge rapidly. There is thus a trade-off between speed and accuracy.

It thus appears relevant to perform successive runs of an iterative optimisation algorithm with successively
smaller values of µ in every run. Each run benefits from the starting point provided by the previous loop, and
from the large (compared to the following runs) smoothing parameter that yields a larger time step and thus a
smaller number of iterations.

∗CEA–Saclay, Fouad.HADJSELEM@cea.fr
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The process of minimising a convex function by minimising a smoothed version of the function and pro-
gressively decreasing the smoothing parameter is called “continuation”. Some examples of such continuation
methods can be found in the work of (Nesterov 2005). In this talk we propose a novel minimisation method
that allows us to smooth a part of the non-smooth function while retaining a maximum speed of convergence
towards the minimum of the original function (and not that of the approximation). In particular, this will
allow us to take into account the `1 penalty explicitly, since it induces the desired sparsity of the solution. Our
method, called CONESTA.

3 Application and Results

Now, we place ourselves in the context of linear regression models. Let X ∈ Rn×p be a matrix of n samples,
where each sample lies in a p-dimensional space; and let y ∈ Rn denote the n-dimensional response vector.
In the linear regression model y = Xβ + e, where e is an additive normally distributed noise, β represents
the unknown vector of length p containing the regression coefficients. The ordinary least squares regression,
constrained with both an Elastic Net and a “group” penalty, will be considered in this work as an application
example of such optimisation problems. The function we wish to minimise is

f(β) =
1

2
‖Xβ − y‖22 +

1− κ
2
‖β‖22

︸ ︷︷ ︸
smooth

+ γ
∑

G∈G
(‖AGβ‖2) + κ ‖β‖1

︸ ︷︷ ︸
non-smooth

, (5)

where s(β) =
∑
G∈G (‖AGβ‖2) is a constraint on the structure of the variables, with G a set of groups of variables

and AG a linear operator on Rp. TV and group `1,2 are two good examples of such “group” penalties.
We show on both simulated data and realistic simulated data that CONESTA compares favorably in terms

of execution time and precision to the reference method we considered, namely the Excessive Gap method (see
Figure 2). One particularly interesting result of our application on linear regression with an `1-norm and a
Total Variation penalties is that we recover more meaningful groups of variables in the estimated model with
CONESTA than with state-of-the-art methods (see Figure 1).
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Figure 1: Maps of weights. β∗ is the ground truth,
βEN+TV the map found with Elastic Net and TV
penalties found by CONESTA and βEN is the map
found with just the Elastic Net penalty.
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computational time (lower plot).p = 10000, n = 2000,
dc = 8, sparsity = 0.50 and SNR = 20.
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Étude de la performance de l’hybridation d’une
méthode d’optimisation avec une formule de

représentation de l’optimum global

M. Chemkhi, M. Jebalia, A. Makhlouf, and M. Moakher

LAMSIN - École Nationale d’Ingénieurs de Tunis - Université Tunis El-manar
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Abstract. Dans ce travail, nous nous intéressons à l’amélioration de la perfor-
mance de certaines méthodes d’optimisation lors de la recherche de l’optimum
global d’une fonction objectif multimodale. Nous regardons en particulier la pos-
sibilité d’améliorer la performance de la méthode de quasi-Newton ”BFGS”,
méthode locale, de point de vue recherche globale.
Pour ce faire, notre idée est de coupler une méthode de recherche stochastique
dérivée d’une formule de représentation [1] avec la méthode déterministe BFGS.
La méthode numérique est basée sur écriture, en méthode de Monté-Carlo, de la
formule de représentation.
Tout d’abord, nous étudions théoriquement et numériquement la convergence
de la méthode numérique issue de la formule de représentation. Dans l’étude
théorique, nous établissons la convergence de la méthode et regardons sa vitesse
de convergence en utilisant des outils de probabilités tels que la loi des grands
nombres. L’étude numérique est faite sur des fonctions objectifs tests bien con-
nues dans la littérature [3]. La méthode est d’abord validée en la comparant à des
méthodes de Monte-Carlo basiques tels que la méthode de recherche aléatoire
adaptative [4]. Les résultats numériques montrent que la méthode issue de la for-
mule de représentation donne de meilleurs performances par rapport aux méthodes
références et ceci en termes de vitesse de convergence et de robustesse.
Par la suite, on couple la méthode stochastique avec la méthode de BFGS. Le nou-
veau procédé donne de meilleurs résultats que la méthode de BFGS sur l’ensemble
de fonctions testées.
En outre, un résultat trés intéressant est le fait que les résultats numériques mon-
trent une robustesse du nouveau procédé par rapport à la dimension de l’espace
de recherche.

Mots clés
Optimisation numérique - Méthodes de Monté-Carlo - BFGS - Probabilités - Loi des
grands nombres.
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RUNGE KUTTA APPROACH FOR OPTION PRICING

WITH CONSTANT ELASTICITY OF VARIANCE (CEV)

MODEL

Abdelilah Jrai�∗ Rajae Aboulaich†

Abstract: In this talk we consider a constant elasticity of variance (CEV) di�usion model for
pricing of an European option. We prove �rstly the existence and uniqueness of the solution in
weighted Sobolev spaces, then we suggest the �nite di�erence method using runge Kutta technique
to solve the associated parabolic partial di�erential equation (PDE). Therefore, we compare the
results with those given by the Monte Carlo method in Broadie and Kaya [4], using two simulations
techniques : the exact method and the Euler discretization. Further, we demonstrate the faster
convergence rate of the error obtained by this approach.

Keyworlds: CEV model, Stochastic volatility, Option pricing, Finite di�erence method.

1 Introduction

The approximation numerical ("estimation") of continuous time models has recently received
increasing attention by both �nancial economists and macro economists. The Black & Scholes
formula [3] who considered the volatility as a constant. It's clear that such assumption does not
re�ect the reality of the market. Empirical studies show that volatility is random and depends on
the time, where the modeling of options is made by a system of stochastic di�erential equations
(SDE), one for the underlying and the other for its volatility, taking into account the correlation
coe�cient between the two noise sources. Hull-White [6], Stein & Stein [7], Heston [5] proposed
analytical solvable models that have stochastic volatility. In Aboulaich et al [1] we studied the
general extension of this model with jumps. The constant elasticity of variance model (CEV) is
an other extension of the stochastic volatility di�usion model (see [2]). It can estimate the change
in asset prices in continuous time. In this work, we focus on the problem for the option valuation
where underlying price is modeled by a di�usion system of stochastic volatility, the volatility
follows another distribution which variance is a polynomial of degree greater than 1. We use the
�nite di�erence method, to calculate the values of these options.
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A family of estimators for the solution of a non-linearinverse problemFederi
o Benvenuto ∗ Houssem Haddar †Abstra
t: A strategy for the derivation of a fast, a

urate and stable algorithm for solving anon-linear ill-
onditioned problem is presented. It is divided into two steps. First, the transforma-tion of the non-linear forward model by an invertible map for non-negative data, whi
h allows theuse of a well-known family of estimators for the regularization of the generalized inverse operator.Se
ond, the 
hoi
e of a suitable estimator of this family a

ording to some statisti
al 
riterion.This strategy allows for simpler methods than algorithms derived by the non-linear model andbetter results than estimates provided by model linearization.Keyworlds: non-linear inverse problem, Poisson noise, varian
e stabilizing transform, biasedestimators, regularization1 A non-linear inverse problemThe inverse problem 
onsidered 
onsists of retrieving a ve
tor of unknown positive parameters
x from a ve
tor of indire
t measures z with a model given by

∣∣∣∣∣∣

M∑

j=1

Aijxj

∣∣∣∣∣∣

2

= zi , (1)where A is a ill-
onditioned N ×M matrix with non-negative elements, between �nite dimensionalnormed spa
es (N ≥ M), and ea
h data ve
tor 
omponent zi is a realization of an independentPoisson variable.1.1 Varian
e stabilizing transformation. We introdu
e a transformation of the non-linear problem by taking the square root of bothsides of equation (1). The advantage is two-fold:1. the problem be
omes pie
ewise linear.2. the sampling varian
e asso
iated with observation yi =
√

zi for all i = 1, . . . , N will be nearly
onstant, as the square root is a varian
e-stabilizing transform for ea
h Poisson variable zi.In pra
ti
e, when A is a non-negative matrix, we transform the problem (1) in a linear problem
Ax = y where y ∼ p(Y ) , (2)where p(Y ) is approximately a multivariate Gaussian with 
ovarian
e matrix Σ := σ2I and σ ≃ 1.A family of estimators for the solution of the linear inverse problem (2) 
an be de�ned as

Xk := Rk Y , (3)
∗INRIA Sa
lay Ile de Fran
e and E
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efederi
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where
Rk := τ

k−1∑

n=1

(I − τA∗A)nA∗ (4)is the series expansion of the generalized inverse operator (A∗A)−1A∗ whi
h 
onverges when
0 < τ < 2/‖A‖2 and A has maximum rank.1.2 Family of biased estimatorsWe propose a method whi
h provides regularized solutions of the problem (1) by studying theproperties of the family (3), i.e. expe
tation, 
ovarian
e and bias of its elements and its asymptoti
properties. In parti
ular, starting from the 
omputation of expe
tation and 
ovarian
e

E(Xk) = Rk E(Y ) and Cov(Xk) = RkΣR∗
k , (5)and the expe
ted value and the 
ovarian
e of the predi
ted signal

E(AXk) = ARk E(Y ) and Cov(AXk) = ARkΣR∗
kA∗ , (6)we noti
e that the 
ovarian
e of Xk is de�nitely in
reasing as k → ∞ where a positive in
rementis understood to mean that the di�eren
e matrix is positive semide�nite. It is easy to show that,while the 
ovarian
e of the predi
ted signal is bounded by the Cramer-Rao bound, the 
ovarian
eof the unknowns, although it is bounded, begins with being small and be
omes very large when

k → ∞ as the matrix A is ill-
onditioned.Be
ause of this, we propose to a
hieve regularization by 
hoosing the k−estimator of the family
Xk su
h that the unknown signal xk has a given signal-to-noise ratio (SNR). Other 
hoi
es 
anbe 
onsidered and in this work we provide a motivation for this one. To approximate the SNR, wede�ne the integrated 
ovarian
e

(sk)j =

M∑

i=1

Cov(Xk)ij (7)and we 
ompute it as the amount of re
onstru
ted signal versus its un
ertainty, i.e SNR(xk) :=
‖xk/sk‖1. A

ording to this 
riterion, when the best meaningful SNR approximation is obtained,the 
orresponding re
onstru
tion xk is a reliable estimate of the solution of problem (1).2 SAXS appli
ationWe apply the method des
ribed above in the determination of the size and shape of 
olloidalparti
les by small angle X-ray s
attering (SAXS). A good approximation of the model des
ribingthe s
attered X-ray distribution is equation (2) where the matrix 
olumns of A represent the so-
alled form fa
tor of a given parti
le shape by varying the radius xj of the parti
le j, and yi is theamount of dete
ted photon-
ount in ea
h 
harged-
oupled-devi
e pixel i. We show the reliabilityand e�
ien
y of the proposed method with simulated data.3 A
knowledgementsThis work was 
arried out during the tenure of an ERCIM "Alain Bensoussan" FellowshipProgramme. The resear
h leading to these results has re
eived funding from the European UnionSeventh Framework Programme (FP7/2007-2013) under grant agreement n�246016.
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3.7 Shape and topological derivatives (STD)





THE TOPOLOGICAL DERIVATIVE FOR

ANISOTROPIC ELASTICITY OF A

STRESS-DISPLACEMENT TYPE CRITERION

Gabriel Delgado Kee�e∗ Marc Bonnet†

Abstract: A comprehensive treatment of the topological derivative for anisotropic elasticity
is presented, with both the background material and the trial small inhomogeneity assumed to
have arbitrary anisotropic elastic properties. A formula for the topological derivative of any cost
functional de�ned in terms of regular volume depending on the displacement and its gradient is
established, by combining small-inhomogeneity asymptotics and the adjoint solution approach.
A numerical experiment on the application of the topological derivative to non-destructive testing
are reported.
Keyworlds: Topological derivative; Anisotropic Elasticity; Elastic Moment Tensor.

1 Setting of the problem

Consider an elastic body occupying a smooth bounded domain Ω ⊂ Rn, n = 2, 3. The anisotropic
elastic properties of the background material (against which the e�ect of small inhomogeneities will
be considered), assumed to be homogeneous, are characterized by the fourth-order elasticity tensor
C. The boundary ∂Ω is split according to ∂Ω = ΓD∪ΓN (where ΓD∩ΓN = ∅ and |ΓD| 6= 0), so that
a given force density g ∈L2(ΓN;Rn) is applied on ΓN while a given displacement ū∈H1/2(ΓD;Rn)
is prescribed on ΓD. Additionally, a body force density f ∈ L2(Ω;Rn) is applied to Ω. Let be a
single small elastic inhomogeneity located at z ∈ Ω, of characteristic linear size a, occupying the
domain

Ba = z + aB,
where B is a bounded smooth domain of Rn and a is small enough so that B̄a b Ω. The inhomo-
geneity is endowed with anisotropic elastic properties characterized by the elasticity tensor C?, so
that the elastic properties of the whole solid are de�ned by the tensor-valued �eld Ca such that

Ca = (1− χ(Ba))C + χ(Ba)C? = C + χ(Ba)∆C, (1)

χ(D) being the characteristic function of the domain D and ∆C := C?−C denoting the elastic
tensor perturbation. Let beW (ū) the space of kinematically admissible displacement with respect
to arbitrary prescribed Dirichlet data

W (ū) :=
{
v ∈H1(Ω;Rn), v= ū on ΓD

}
. (2)

Then the displacement �eld ua ∈W (ū) arising in the solid containing the small inhomogeneity
due to the prescribed excitations (f , g, ū) solves the transmission problem

div(Ca :ε[ua]) + f = 0 in Ω, Ca :ε[ua] · n = g on ΓN, u = ūa on ΓD. (3)

We also introduce the auxiliary problem of a perfectly-bonded inhomogeneity (B,C?) embedded
in an in�nite elastic medium Ω =Rn subjected to a uniform remote stress equal to the background
stress at z. The problem thus consists in �nding the displacement �eld uB such that

div(CB :ε[uB]) = 0 in Rn, uB(ξ)− u∞(ξ) = O(|ξ|−2), |ξ| → ∞, (4)

∗CMAP�Ecole Polytechnique, delgado@cmap.polytechnique.fr,
†ENSTA, mbonnet@ensta.fr
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where the background displacement u∞ is de�ned by u∞(ξ) = ∇u(z) ·ξ and with CB := C +
χ(B)∆C.

2 Elastic moment tensor

The elastic moment tensor (EMT) [1, 3] plays an important role in the small-inhomogeneity
asymptotics. The EMT A is the fourth-order tensor de�ned for any value of the constant tensor
∇u(z)∈Rn,n by

A :∇u(z) =

∫

B
∆C :∇uB dV. (5)

The EMT has the same lower and mayor symmetry properties of the elasticity tensor C. Fur-
thermore let be G∞ the elastostatic full-space Green's tensor. Then the following asymptotic
development stands

uB = u∞ + ∇G∞(x− z) : A : ∇u∞ +O(|x|−n), (|x| → ∞).

3 Topological sensitivity analysis

Consider the cost functionals of the form

J(Ca) = Ja(ua,∇ua) with Ja(u,∇u) =

∫

ω

ψa(x,u,∇u) dV (x), ω ⊂ Ω, (6)

where the density ψa is de�ned by

ψa = (1− χ(Ba))ψ + χ(Ba)ψ? = ψ + χ(Ba)∆ψ, (7)

with ψ and ψ? (and hence also ∆ψ := ψ?−ψ) assumed regular. The arguments x∈Ω, u∈Rn, d∈
Rn×n denote the generic arguments of a density ψ(x,u,d), ∂xψ, ∂uψ, ∂dψ denote the partial
derivatives with respect of the corresponding arguments, and higher-order partial derivatives are
denoted similarly, e.g. ∂2

udψ. The topological derivative DJ(z) of an inclusion of elliptic shape
and elastic moduli C and C? on z, will be de�ned through

J(Ca) = J(C) + anDJ(z) + o(an).

A particularly interesting case in non-destructive control is when Ba ⊂ Ω\ω, and ω is a set of
control volumes. In that case the topological derivative reads [2]

DJ(z) = −∇p(z) : A : ∇u(z),

and the adjoint state p satis�es the variational formulation
∫

Ω

ε[p] : C : ε[q]dV =

∫

Ω

χω {∂dψ : ∇q + ∂uψ · q} dV,∀q ∈W (0).
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A 3D segmentation in X ray tomography

Badreddine Rjaibi∗ Lamia Jaafar Belaid† Walid Mourou ‡

Abstract: We propose in this work two methods for a 3D segmentation problem in X-ray
tomography. The algorithms proposed are based on the topological gradient approach and edge
detection. More precisely, the first algorithm is based on a coupled method between the 2D water-
shed algorithm and a marching cubes algorithm. The second algorithm concerns a 3D extension
of the 2D watershed algorithm using markers technic. Experimental results obtained on noisy
data illustrate the efficiency of ours approaches and show a good visualization of a given volume.
Keywords: Marching cubes, tomographic reconstruction, Topological gradient, segmentation,
watershed.

1 A 3D segmentation in X ray tomography

The goal of ours approaches is to give a volume visualization of the anomaly present inside the
human body.

1.1 A 3D segmentation Using a 2D Watershed algorithm coupled with

Marching cubes algorithm

The first approach is based on the 2D Watershed algorithm by marker coupled with marching
cubes algorithm.
This segmentation algorithm process in to three steps:

1. Acquisition of the slices reconstructs by the topological gradient approach [1].

2. Segmentation by marker of every slice which contains the object target by the method
proposed by [2].

3. Application of the algorithm of the marching cube to the cube formed by segmented slices
[3].

1.2 A 3D segmentation using a 3D extension of the 2D watershed algo-

rithm by marker of one slice only

The second approach is a 3D extension of the 2D Watershed algorithm by marker of one slice only.
This segmentation algorithm process in to five steps:

1. Acquisition of the reconstructed slices and their edges: The reconstruction of slices and the
detection of edges are made by the approach presented in section 2.

2. Construction of 3D edge by a stack of 2D edges.

3. Marking of objects to be segmented: one click on a portion of object to be segmented in a
single slice only.

∗LAMSIN-ENIT, Campus Universitaire, BP37, 1002 le Belvédère, Tunis, Tunisie,

badreddine.rjaibi@lamsin.rnu.tn,
†University of Dammam College of Sciences PO Box 838, 31113 Dammam, KSA, Ljaafar@ud.edu.sa,
‡LAMSIN-ENIT, Campus Universitaire, BP37, 1002 le Belvédère, Tunis, Tunisie, walid.mourou@lamsin.rnu.tn
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4. Calculation of the 3D watershed with calculation of the volume.

5. 3D display.

2 Numerical results

(a) (b)

Figure 1: (a): 3D representation of the lesion of the global image , (b): 3D representation of the
lesion which the volume is 19147 voxels.

We present in the Figure 2 a zoom on the result obtained by the two proposed approaches for
a 3D segmentation in tomography.
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Figure 2: (a): Zoom on the lesion segmented by the technique of Marching Cubes, (b): zoom on
the lesion segmented by the 3D watershed algorithm with Marking.
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Error Estimation in Shape Optimization

Bernhard Kiniger∗

Abstract: In this talk we consider a model shape optimization problem. The state variable
solves an elliptic equation on a star-shaped domain where the radius is given via a control function.
We reformulate the problem on a fixed reference domain, show existence of an optimal control
including higher regularity. The problem is discretized using finite elements. We show a-priori
error estimates for the error between the optimal control and its fully discretized counterpart
and apply the dual-weighted residual method for a-posteriori error estimation. We finish the
presentation with some numerical results.
Keywords: shape optimization, error estimation

1 Introduction
We consider the following shape optimization problem governed by a linear elliptic equation:

min
q∈H2

per((0,2π)),u∈H1
0 (Ωq)

J(Ωq, u) =
1

2
‖u− uqd‖

2

L2(Ωq)
+
α

2
‖q‖2H2((0,2π)) , (1)

subject to {
−∆u+ u = fq in Ωq,

u = 0 on Γq,
(2)

where the domain Ωq is star-shaped with respect to the origin and radius given by the control q,
see Figure 1. The data functions uqd and f

q are restrictions of sufficiently smooth functions defined
on a sufficiently large holding-all domain, and α > 0.

Figure 1: The domain Ωq

In order to solve (1) we use the method of mapping [6]. We use a transformation F to
reformulate (2) on a fixed reference domain Ω0. Using results presented in [4], it is possible
to proof the existence of an optimal control q with corresponding optimal state u and optimal
transformation F . Furthermore it is possible to show higher regularity of the optimal control,
q ∈ H4((0, 2π)).

∗Chair of Optimal Control, Technische Universität München, Center for Mathematical Sciences, Boltzmannstraße
3, 85748 Garching b. München, Germany; kiniger@ma.tum.de
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2 Error Estimation
In order to derive error estimates, we discretize problem (1). The control is being discretized using
piecewise cubic polynomials, the state and the transformation are discretized using (bi)linear finite
elements. In addition, we also have to approximate Ω0 with a polygonal domain Ω0,h. It is possible
to show that there exists a sequence

(
qσ,h,k

)
σ,h,k>0

of optimal controls to the fully discretized
problems converging to the optimal control q of the continuous problem. Here, σ, h and k are the
discretization parameters for the control, the state and the transformation, respectively.

2.1 A-priori Error Estimates
By generalizing the methods used in [5] and using a weak assumption on the coercivity of the
second derivative of the reduced cost functional we can proof our main result, namely

∥∥q − qσ,h,k
∥∥
H2((0,2π))

≤ c
(
σ2 + h2 + k2

)
. (3)

2.2 A-posteriori Error Estimates
The so-called dual weighted residual method [1] is widely used for a-posteriori error estimates
in the context of finite elements. We will show how to adapt this method for a-posteriori error
estimation with respect to the discretization of the control, i.e. the shape of the domain.

2.3 Numerical Results
The problem has been implemented using the toolkits Gascoigne [2] and RoDoBo [3]. We will
present some numerical results verifying our claims.

3 Acknowledgments
This work was done under the supervision of Boris Vexler whose help and support is warmly
thanked.
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Dérivation par rapport à la forme du système de
Navier-Stokes non stationnaire avec des conditions aux

bords de type Navier

Bsaies Chaima∗ Raja Dziri†

Mots clés : Dérivation par rapport à la forme- Equations de Navier-Stokes non stationnaires-
conditions aux bords de type Navier.

Résumé

Nous nous intéressons dans ce travail à l’étude de la dérivabilité par rapport à la forme de la vitesse
de l’écoulement d’un fluide Newtonien, visqueux et incompressible afin d’établir une condition
nécessaire d’optimalité de premier ordre associée au problème de minimisation par rapport à la
forme de la traînée visqueuse dûe à la pésence d’un obstacle tridimensionnel S :

(P) min
Ω∈Ad

J(Ω) = min
Ω∈Ad

µ

∫ T

0

∫

Ω

ε(uΩ)..ε(uΩ)

où J(Ω) est l’énergie visqueuse dissipée, D est un domaine suffisament grand mais borné de R3,
Ad est l’ensemble des domaines admissibles et uΩ est la vitesse du fluide.

Le choix des conditions aux bords de type Navier est motivé par le fait que la présence de
rugosité sur S peut affecter considérablement le comportement du fluide au voisinage de l’obstacle
(cf. [3] et [4]). Ce qui rend la question pertinente d’un point de vue optimisation de forme. Dans
la pratique, on a souvent recourt à ce qu’on appelle les "lois de paroi" (ou "wall laws" ) où la
frontière rugueuse est remplacée par une frontière artificielle régulière et une condition aux limites
homogéneisée qu’est la condition de Navier. Plus précisement, la condition de non glissement :
u = 0 sur le bord est remplacée par les conditions aux limites de Navier qui exprime le fait
que la composante tangentielle de la vitesse de l’écoulement est proportionnelle aux contraintes
tangentielles : {

µ(ε(u).n)tg + βutg = 0
u.n = 0 (condition de non-pénétration)

où ε(u) : tenseur de déformation, µ : coefficient de viscosité et β : coefficient de frottement
Dans notre étude de la dérivabilité par rapport à la forme, on a adopté la méthode des vitesses

introduite par J.Sokolowski et J-P.Zolésio, voir par exemple [1] et [2].
La démarche consiste dans un premier temps à prouver l’existence et l’unicité d’une solution
pour Ω ∈ Ad sous certaines hypothèses portant sur la régularité des données sur le bord pour
l’existence. Pour l’uncité et comme dans le cas classique de conditions aux bords de Dirichlet, il a
fallu imposer plus de régularité sur les données et rajouter une contrainte supplémentaire satisfaite
pour les grandes viscosités, cf. [5] et [6]. Pour le calcul la dérivée par rapport à la forme du système
de Navier-Stockes, on a utilisé la transformation de Piola [7] et le théorème des fonctions implicites
faible introduit par J.-P. Zolésio, [8].
∗FST-Département de Maths, chaimabsaies@yahoo.fr
†FST-Département de Maths, raja.dziri@fst.rnu.tn
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