
Efficient Solution Methodology Based on a Local Wave Tracking Strategy for High-
Frequency Helmholtz Problems        

Mohamed Amara 

Abstract: The Helmholtz equation belongs to the classical equations of mathematical physics 
that are well understood from a mathematical view point. However, the numerical 
approximation of the solution is still a challenging problem in spite the tremendous progress 
made during the past fifty years. Indeed, the standard finite element method (FEM) is not well 
suited for solving Helmholtz problems in the mid- and high-frequency regime because of the 
quasi-optimality constant which grows with the wavenumber ka. In order to maintain a certain 
level of accuracy while increasing the frequency, a mesh refinement is required and/or higher 
order FEM are used, leading to a prohibitive computational cost for high wavenumbers. In 
response to this challenge, alternative techniques were proposed. Numerous of these 
approaches use the plane waves, since they are expected to better approximate highly 
oscillating waves. In the discontinuous Galerkin method (DGM), the solution is approximated 
at the element mesh level using a superposition of plane waves which results in a 
discontinuous solution along interior boundaries of the mesh. The continuity is then restored 
weakly with Lagrange multipliers. The rectangular and quadrilateral elements clearly 
outperform the standard Galerkin FEM. For example, for ka ≥ 10 and for a fixed level of 
accuracy, the so-called R-4-1 element reduces the total number of degrees of freedom  (dofs) 
required by the Q1 finite element by a factor greater or equal to five. In spite of this 
impressive performance, the DGM has three important drawbacks. First, the method has to 
satisfy an inf-sup condition which is translated, in practice, as a compatibility requirement: the 
number of dofs of the Lagrange multiplier (corresponding to the dual variable) and of the field 
(the primal variable) cannot be chosen arbitrarily. The problem here is that there is no 
theoretical result on how to satisfy this compatibility requirement, except for the simple case 
of R-4-1 element. Hence, for other elements, the existing choices are based on numerical 
experiments only. The second major issue with the DGM is that it becomes unstable as we 
refine the mesh. Such instabilities occur because of the singularity of the local problems and, 
to some extent, to the loss of the linear independence of the plane waves as the step size mesh 
discretization tends to zero. The latter affects dramatically the stability of the global system 
due to its ill-conditioning nature. Finally, the DGM exhibits a loss of accuracy for 
unstructured mesh. We propose a new solution methodology for Helmholtz problems, that 
falls in the category of discontinuous Galerkin methods and least square approaches. The 
proposed formulation distinguishes itself from existing procedures by the well-posed 
character of the local problems and by the resulting global system which is associated with a 
positive semi-definite Hermitian matrix. More specifically, the computation domain is 
subdivided in quadrilateral- or triangular shaped elements. The solution is approximated, at 
the element level, by a superposition of adapted planewaves (that are solution of the 
Helmholtz equation). These adapted planewaves are choosen using a preprocessing based on 
an optimisation procedure. 


