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Abstract
The use of compartmental models is well known in epidemiology. In this paper, we present a
numerical method for the convergence analysis of stochasistic extensions of these models. Con-
sidering three stochastic extensions of the SIR model such as the model with a pure-jump Markov
chain, the model with Ito’s integral, and the Poisson stochastic model; we studied the convergences
of these models towards the basic deterministic model. Simulations highlight the differences in
the speed of convergence of the three stochastic extensions considered. This technique constitutes
a method for analyzing the strengths and limitations of stochastic compartmental models.
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I INTRODUCTION

Mathematical modelling of infectious diseases has been used for decades to study the mecha-
nisms of disease spread, to predict the evolution of an epidemic, to evaluate control strategies
and to help design public health interventions. Daniel Bernouilli was the first to bring math-
ematical research to epidemiology[5]. A well-established method of making inferences about
epidemic patterns is to divide the population of interest by the abstract notion of compartments,
defined by the health status of the pathogen in the system, the demographic or epidemiological
characteristics. The cornerstone of these compartmental models was developed by Kermack
WO in 1927[3].

Recently, under the magnitude of the covid’19 pandemic, various extensions of the SIR models
have been proposed to describe the evolution of this disease in different countries[9]. In the
event that we have uncertainties on certain model parameters or we only have a limited num-
ber of data, stochastic compartmental models are preferred[8]. However, in many cases, the
convergences of these so-called stochastic models are difficult to prove.

In this article, our objective is to study the strengths and limitations of stochastic compartmen-
tal models using simulations. Starting from the basic deterministic model, we consider three
stochastic extensions: the continuous-time markov chain model, the stochastic model with Ito’s
integral and the model with the model with the Poisson process. After estimating the different
parameters of these models, we carry out analyzes on the long-term behavior of the models.
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II DETERMINISTIC BASELINE MODEL

All compartmental epidemic models are derived from the Kermack model described in the
figure 1 below[3].

SUSCEPTIBLE INFECTIOUS INFECTEREMOVEDβ γ

Figure 1: SIR model of Kermack WO

The model can be formulated using ordinary differential equations (ODE). A closed population
is assumed, i.e. at all times t :

dS(t)
dt

= −βS(t) I(t)
N

dI(t)
dt

= βS(t) I(t)
N
− γI(t)

dR(t)
dt

= γI(t)

(1)

Several assumptions have been made in the formulation of the above equations. The population
of a compartment is differentiable with respect to time and the epidemic process is determin-
istic. The compartments are homogeneous, which means that an individual in the population
contracts the disease with a rate of β, being the infection rate of the disease. A fraction equal
to γ representing the average recovery/mortality rate of infectious individuals leaving that com-
partment per unit time to enter the recovered compartment.

Figure 2: Numerical simulation with S(0)=97, I(0)=3 and R0=5

An important parameter of the model that determines the magnitude of the epidemic is the basic
reproduction number R0 given by:

R0 =
β

γ
(2)

This is the number of new infections produced by an infected individual in an intact population
of susceptible individuals only. When R0 > 1, an epidemic occurs and when R0 < 1, there is
no epidemic.

III PURE JUMP STOCHASTIC MARKOV CHAIN MODEL

In the case of the continuous time Markov chain (CTMC) model, we consider a new infection
or a new cure in a sufficiently small time ∆t. There, the term o(∆t) is included in the definition
and (limt→∞(o(∆t)/∆t) = 0).
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The CTMC epidemic processes are defined on a continuous time scale t ∈ [0,∞), but the states
S(t),I(t) and R(t) are discrete variables, i.e. S(t), I(t), R(t) ∈ 0, 1, 2, ..., N .

The infinitesimal transition probabilities are defined as follows:

P (s+ j, i+ k | s, i) =


(βSI
N

)∆t+ o(∆t) (j, k) = (−1, 1)
(γI)∆t+ o(∆t) (j, k) = (0,−1)

(1− (βSI
N

+ γI))∆t+ o(∆t) (j, k) = (0, 0)

(3)

The event times 0 < T1 < T2 < ... during which an individual moves from one state to another
are modelled as a renewal process with exponentially distributed increments:

P (Tk − Tk−1 > t | Tj, j ≤ k − 1) = e−Θ(Tk−1)

où

Θ(Tk−1) =

(
βS(Tk−1)I(Tk−1)

N
+ γI(Tk−1)

)

Algorithm 1: CTMC SIR Model
Choose times;
i← 0;
X0 ← (S0, I0, R0)
while i < times do

p1 = βS(i)I(i)
N

p2 = γI(i)
λ = p1 + p2

ti+1 − ti ∼ Exp(λ)
if U[p1,p2] = p1 then

Xi+1 ← (Si − 1, Ii + 1, Ri)
else

Xi+1 ← (Si, Ii − 1, Ri + 1)

i++

3.1 Probability of an outbreak

In the birth and death model, the process approaches state 0 or approaches infinity. The prob-
ability of absorption in state 0 depends on the birth probability p, death probability q and the
initial position. If we take X(t) = x0 > 0, then we can show that :

lim
t→∞
{X(t) = 0} =

{
1 if p ≤ q

( q
p
)x0 if p ≥ q

This identity is also valid for in a CTMC (Continuous Time Markov Chain) model, where p
and q is replaced by λi and γi, where i is the position. In a linear birth and death process, the
infinitesimal transition probabilities satisfy:

pi+j,i(∆t) =


λi∆t+ o(∆t), j = 1
γi∆t+ o(∆t), j = −1

1− (λ+ γ)i∆t+ o(∆t), j = 0
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The probability of absorption is one if λ ≤ γ. But if λ > γ the probability of absorption
decreases to (γ/λ)x0 . In the latter case, the probability of persistence of the population is
1− (γ/λ)x0 .

This identity can be used to estimate the probability of an epidemic in CTMC SIS and SIR
epidemic models, where population persistence can be interpreted as an epidemic.

Assume that the initial number of infected individuals i0 is small and the population size N is
large. Then the birth and death functions in a SIR epidemic model are given by:

• Birth=βi(N−i)
N

' βi
• Death=γi

Applying the previous approximations for the birth and death functions leads to the approxima-
tion λ/γ = γ/α = 1/R0, then:

Prob {I(t) = 0} '
{

1 if R0 ≤ 1
( 1
R0

)i0 if R0 > 1

Therefore, the probability of an epidemic is:

Probability of an outbreak '
{

0 if R0 ≤ 1
1− ( 1

R0
)i0 if R0 > 1

There is close agreement between the numerical values and the estimated probability of an
epidemic when i0 = 1, 2, 3 alors [1− (1/R0)i0 = 0.8, 0.96, 0.992] with R0 = 5

3.2 Study of convergence

Figure 3: Estimating the parameters of β = 0.50, γ = 0.10 and R0 = 5 for model CTMC SIR with
S(0)=97 and I(0)=3 on 1000 simulation trajectory, the red line represents the parameter and the blue line
represents the mean of the estimate

Figure 4: Estimating the parameters of β = 0.50, γ = 0.10 and R0 = 5 for model CTMC SIR with
S(0)=997 and I(0)=3 on 1000 simulation trajectory, the red line represents the parameter and the blue
line represents the mean of the estimate
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By the law of large numbers, in the infinite limit, the stochasticity disappears. Thus, the model
fails to correctly reproduce the stochastic dynamics, the model converges to the deterministic
model in the infinite limit. Indeed, we observe a decrease in the relative stochasticity of trajec-
tories when studying a large population.

The parameter R0 is determined in a similar way to the deterministic model except for the
probability of an epidemic. As shown in the figure above, there is a probability where R0 is less
than 1 i.e. there is no epidemic.

IV STOCHASTIC DIFFERENTIAL EQUATION MODEL

There is a need to investigate other approaches that include stochastic noise that does not vanish
for large populations. The idea, which will be developed in this section, is to add white noise to
the transition rates in a stochastic SIR model[1][7].

Suppose that the time variables are continuous, S(t), I(t), R(t) are discret random variables,
that is to say..,

S(t), I(t), R(t) ∈ [0, N ]

Assumptions similar to the previous section are made regarding the variation of the random
variables on the variation of ∆S and ∆I . In addition, we assume that the variation of these
random variables is approximately normally distributed.

Let’s consider ∆X(t) = (∆S,∆I)T . Then, the mean of ∆X(t) to the order of ∆t is:

E(∆X(t)) =

(
− β
N
SI

β
N
SI − γI

)
∆t

The covariance matrix of ∆X(t) is V (∆X(t)) = E(∆X(t)[∆X(t)])T−E(∆X(t))E(∆X(t))T '
E(∆X(t)[∆X(t)]T ) because the element of the second term is o([∆t]2). So the covariance ma-
trix of ∆X(t) to the order of ∆t is

V (∆X(t)) =

(
β
N
SI − β

N
SI

− β
N
SI β

N
SI + γI

)
∆t

The random vector X(t+ ∆t) can be approximated as follows:

X(t+ ∆t) = X(t) + ∆X(t) ' X(t) + E(∆X(t)) +
√
V (∆X(t)) (4)

Since the covariance matrix is symmetric and positive definite, it has a unique square root
B
√

∆t =
√
V . This is an Euler approximation of the Itô integrals. For sufficiently smooth

coefficients, the solution X(t) of (4) converges to the solution of the following system of Itô’s
DSE: {

dS(t)
dt

= −βS(t) I(t)
N

+B11
dW1

dt
+B12

dW2

dt
dI(t)
dt

= βS(t) I(t)
N
− γI(t) +B21

dW1

dt
+B22

dW2

dt

(5)
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where W1 and W2 are independent Wiener processes.

Figure 5: 100 model simulation trajectories for two different population sizes

The model had the deterministic model as the mean, but the noise builds up a variance that
allows for stochastic dynamics even in large population numbers.

V STOCHASTIC MODELS POISON PROCESSES

5.1 Presentation of the model

Let τ0 < τ1 < τ2 < · · · the successive times of infection. Given λi, (i ≥ 0) the i-th infected
individual who had contact with the others according to the Poisson process P (

∫ t
0
λi(s−τi)ds).

The individual has contact with others in the population according to the Poisson process P(Ct).
If the contact is with a susceptible individual, it leads to a new infection with the probability of
pi(t− τi).[4].

Let S(t), I(t) and R(t) be the number of susceptible, infectious and Recovered individuals at time
t. Consider S(t) + I(t) +R(t) = N for all t ≥ 0 and S(0) > 0, I(0) > 0 and R(0) = 0.

With Pinf and Prec two independent Poisson processes:


S(t) = S(0)− Pinf (β

∫ t
0
S(s)I(s)

N
ds)

I(t) = I(0) + Pinf (β
∫ t

0
S(s)I(s)

N
ds)− Prec(γ

∫ t
0
I(s)ds)

R(t) = Prec(γ
∫ t

0
I(s)ds)

(6)

5.2 Study of convergence

Figure 6: Estimating the parameters of β = 0.50, γ = 0.10 and R0 = 5 for model CTMC SIR with
S(0)=97 and I(0)=3 on 1000 simulation trajectory, the red line represents the parameter and the blue line
represents the mean of the estimate
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Figure 7: Estimating the parameters of β = 0.50, γ = 0.10 and R0 = 5 for model CTMC SIR with
S(0)=997 and I(0)=3 on 1000 simulation trajectory, the red line represents the parameter and the blue
line represents the mean of the estimate

We know that if (Xn) is a sequence of random variables following the Poisson laws of pa-
rameters λn. If limn→∞ λn = ∞, then Xn−λn√

λn
converges in law to N (0, 1). We see then that

the model does not lose the stochastic dynamics in large population. So the model does not
converge to the deterministic ODE model.

Figure 8: 100 model simulation trajectories for two different population sizes

In large populations, the R0 increases i.e. the epidemic increases in contagiousness and pro-
gramming accelerates.

VI CONCLUSION AND PERSPECTIVE

In analysing the stochastic compartmental models, we find that the Markov model allows for a
natural modelling of the evolution of the epidemic and the results already established in proba-
bility theory allow for further studies. It is a powerful and complete model for compartmental
epidemiological modelling but the speed of convergence to the deterministic model is very fast
in large numbers. The model does not allow for the reproduction of stochastic dynamics. In the
model, the infection disappears much earlier than in the corresponding deterministic models.
The model can also be used to represent the probability of an outbreak. Furthermore, the ex-
tinction time of the epidemic could also be estimated since in the model all states are transient
except the I(t) = 0 state, a study already investigated in Moujahid, Abdelmalik and Vadillo[6].

Stochastic differential equation models can be used to approximate the stochasticity of the
Markov model and will allow parameter estimates with continuous data. But it is a simple
model close to the deterministic model which just allows to integrate a noise in the dynamics of
the epidemic. The poissonian model presented here is more interesting in the situation where
we want to study a large population. This model keeps the stochasticity in a large population.
It will also allow a simple method to estimate the parameters of the model. Now we can prove
mathematically the convergence speeds of the different stochastic compartmental models.
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Figure 9: IIllustration of a continuous time stochastic process observed between units of time t0 and
units of time t.
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Consider a CTMC SIR model with a trajectory

U = (s0, T0, s1, T1, ..., sk−1, Tk−1, sk)

The system starts in state s0 at time unit t0 and enters the last state sk at tk, as shown in Figure 9. There are a total
of k transitions in this process. At any time, all observations occur in the time interval (t0, t) where t ≥ tk, and
there are no transitions in the interval tk, t.

The likelihood function is:

L(β, γ) =

k−1∏
i=0

(λsie
−λsiTi)(psi+i←si)(e

−λsk (t−
∑k−1
i=0 Ti)) (7)

where λsie
−λsiTi is the probability that the holding time Ti in state si, psi+i←si is the probability of si transitioning

to si+1 and e−λsk (t−
∑k−1
i=0 Ti) is the probability that no further transitions P occur after time sk until time t. We

observe that
∑k−1
i=0 Ti = tk. Let t− tk = Tk be taken, then:

e−λsk (t−
∑k−1
i=0 Ti) = e−λk(Tk)

and

L(β, γ) = e−λsk (Tk)
k−1∏
i=0

(λsie
−λsiTi)(psi+i←si) (8)

Let tβ1
, tβ2

, ..., tβn be the set of moments where there is a transition i → i + 1 and tγ1 , tγ2 , ..., tγn is the set of
moments where there is a transition i → i − 1. This means that the first transition from i to i + 1 in the system
occurred at time tβ1 , the first transition from i → i − 1 in the system occurred at time tγ1 and so on. There are n
transitions of i → i + 1 and m transitions of i → i − 1. There are a total of k transitions in the system from the
state s0 to the state sk.

The transition probability from (s,i) to (s-1,i+1) is:

p(s,i)→(s−1,i+1) =
(βsiN )

(βsiN + γi)

And the transition probability from (s,i) to (s,i-1) is:

p(s,i)→(s,i−1) =
γi

(βsiN + γi)

The likelihood function can be written as follows:

L(β, γ) = exp

(
−
(
βS(tk)I(tk)

N
+ γI(tk)

)
Tk

) tβn∏
a=tβ1

[
βS(a)I(a)

N
exp

(
−
(
βS(a)I(a)

N
+ γI(a)

)
Ta

)]

×
tγn∏
b=tγ1

[
βS(b)I(b)

N
exp

(
−
(
βS(b)I(b)

N
+ γI(b)

)
Tb

)]
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Taking the logarithm of the likelihood function, we have:

LogL(β, γ) = −
(
βS(tk)I(tk)

N
+ γI(tk)

)
Tk+

tβn∑
a=tβ1

[
log

(
βS(a)I(a)

N

)
−
(
βS(a)I(a)

N
+ γI(a)

)
Ta

]

+

tγn∑
b=tγ1

[
log

(
βS(b)I(b)

N

)
−
(
βS(b)I(b)

N
+ γI(b)

)
Tb

]

Taking the partial derivative of the logarithm of the likelihood function with respect to β and γ, we have :

∂logL(β, γ)

∂β
=

tβn∑
a=tβ1

[(
1

β

)
−
(
S(a)I(a)

N

)
Ta

]
+

tγm∑
b=tγ1

[
−
(
S(b)I(b)

N
Tb

)]
−
(
S(tk)I(tk)

N

)
Tk

∂logL(β, γ)

∂γ
= −I(tk)Tk +

tγm∑
b=tγ1

(
1

γ

)
−

 tβn∑
a=tβ1

[I(a)Ta]+

 tγm∑
a=tγ1

[I(b)Tb]

After calculation we have the estimator of β and γ:

β̂ =
n∑k

i=0

[
S(ti)I(ti)Ti

N

] (9)

where n =
∑tβn
a=tβ1

γ̂ =
m∑k

i=0 [I(ti)Ti]
(10)

où m =
∑tγn
a=tγ1
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