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Abstract
This paper deals with the analysis of a nonlinear model of tumor growth with treatment. The
model consists of a system of equations that describe the evolution of the colony size distribution
of the metastatic tumors and the number of cells present in a primary tumor. The former evolution
is described by a linear transport equation and the latter by an ordinary differential equation of
Gompertzian type. The two dynamics are coupled through a nonlocal boundary condition that
takes into account the tumor colonization rate. The model takes into account the presence of
treatments by chemo and radiotherapy. We prove an existence result, the main difficulty is to deal
with the coupling and to take into account the discontinuities in time that come from the treatment
terms.
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I INTRODUCTION

In deciding the best treatment for cancer therapy, estimations of the colony size of tumors,
predictions of the metastasis propagation and responses to treatments are needed. Given its
vitality, this subject is of increasing interest for mathematicians [6, 18, 23, 27]. In this context,
we consider the mathematical model of tumor growth introduced in [3]. It is a linear coupling
system between a transport partial differential equation (PDE) and an ordinary differential equa-
tion (ODE) with a nonlocal boundary condition. We point out that in [8], the authors studied
the existence, uniqueness and asymptotic behavior of solution for this model by implement-
ing a semi-group approach. Also in [10, 13, 24], the authors added a term associated with
chemotherapy, the resulting problem is then nonlinear. They proved the existence of a solu-
tion in a smooth setting and carried out a thorough numerical analysis that justifies the model
by clinical trials. We note that in [19], the authors proposed a PDE model of tumor growth
that describes the movement of cells generated by the proliferation of cancer cells which exerts
pressure on surrounding tissues. Furthermore in [18], the authors extended some mathematical
models of cancer with mixed treatments. They presented and analyzed a model, in terms of an
ODE system, with chemo and radiotherapy treatments. In [22, 25, 26], the authors propose and
analyze some conceptual models for the tumor-immune interaction based on dynamic systems.
They focused on bifurcation and stability. The problem of estimating the parameters of a tumor
growth model with the objective of obtaining a prognostic model and of finding fields that are
not observable, has been widely studied in the literature [14, 15].
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In this work, we complete the model studied in [8] by considering a concomitant treatment.
The radiotherapy term is the one given in [4, 12]. The associated mathematical data is then
discontinuous in time and space. Here, we focus on the irregularities in time. We prove the ex-
istence and uniqueness of solution with piecewise regularity in time and Lebesgue integrability
in space. Our strategy is the following: we first solve the ODE (decoupled part of the system)
within the Caratheodory framework[2, 5], then we plug the solution into the PDE part solving
it using a fixed point argument. We also carry out some numerical tests. We discretize the ODE
using Runge Kutta schemes and the PDE by the method of characteristics [1]. We notice that
there is a large disparity in the parameter scales of the model, which is restrictive for the choice
of the discretization parameters. Our numerical tests suggest that a mixed treatment should be
better to reduce the population of cancer cells for some parameters related to the progress of the
disease.

Finally, the contribution in this work lies at the same time in the modeling, the theoretical
analysis and the numerical approach. To the best of our knowledge, Iwata’s model has not
been used with mixed treatments. Also, compared to [13], our proof of solution’s existence is
strongly penalized by the discontinuities of the data. On the numerical level, a sophisticated
calculation code, based on the method of characteristics, is implemented. The numerical results
show the interest in a mixed treatment for a clinical combination of parameters linked to the
disease.

The paper is sketched as follows. In section 2, we write our model with some details that allow
us to understand the origin of irregularities. Section 3 is devoted to the analysis of the ODE’s
solution. In section 4, we present an existence result. The proof is based on the construction
of an adequate contracting operator which takes into account the different constraints of the
problem. Finally in section 5, we present our discretization strategy and some numerical tests.

II THE MATHEMATICAL MODEL

2.1 Growth model and distribution of metastatic tumors

2.1.1 The primary tumor

To formulate the process of metastases, we consider the model introduced in [3] and taken up
in [8–10]. The authors consider an idealized case in which a primary tumor is generated from
a single cell at time t = 0 and grows at rate g(x) per unit time, where x denotes the tumor size
represented by the number of cells in the tumor. The number xp(t) of cells present in a primary
tumor at time t is given by the solution of

d

dt
xp(t) = g (xp(t)) ; t ≥ 0, (1)

xp(0) = 1,

with a Gompertzian growth rate

g(x) = ax ln

(
b

x

)
(2)

where b ≥ 1 is the maximal tumor size and a is a positive parameter that measures the rate of
clonogenic proliferation. The solution of (1) is

xp(t) = b1−e−at

. (3)
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It increases strictly between 1 and b, the corresponding curve is a sigmoid with three phases: a
slow growth phase, an exponential growth phase and a slowdown one. This takes into account
the stages of carcinogenesis, namely: the initiation phase corresponding to the transformation
of a normal cell into a malignant cell, the phase of promotion corresponding to the accumulation
of mutations and the slowing phase which corresponds to cell loss.

2.1.2 The model without treatment

Following [3], the primary growing tumor emits metastatic cells at rate β(x). In turn, each
metastatic cell grows into a new tumor which grows at rate g(x) and emits new metastatic
nuclei like the primary tumor. Let u(t, x) represents the colony size distribution of metastatic
tumors with x cells at time t. Assuming the localized colonization nuclei sufficiently distant
from each other, so that they do not overlap, the dynamic model proposed in [3] writes

∂u

∂t
(t, x) +

∂

∂x

[
g(x)u(t, x)

]
= 0, t > 0, x ∈]1, b[, (4)

u(0, x) = 0, (5)

g(1)u(t, 1) =

∫ b

1

β(x)u(t, x)dx+ β (xp(t)) . (6)

The term ∂
∂x
(g(x)u(t, x)) reflects the transport of tumor cells. Equation (5) indicates that ini-

tially no metastatic tumor exists. Equation (6) means that the number of metastatic single cells
newly created per unit time is the total rate of new metastases due to metastases already present
and to the primary tumor. The colonization rate β(x) has the form

β(x) = m.xα, (7)

where m is the colonization coefficient and α is the fractal dimension of the blood vessels
infiltrated into the tumor. Equation (7) indicates that the rate of metastases from a tumor of size
x is proportional to the number of tumor cells in contact with the blood vessels. The parameter
α expresses how the blood vessels are geometrically distributed in the tumor. We refer to [3]
for more details on the development of the model and its justification by clinical trials, as well
as for an extensive bibliography on the subject.

2.1.3 Consideration of chemo and radiotherapy

In [13], the authors have taken up the model of Iwata et al [3] by considering chemotherapy
treatment. We complete here by taking into account concomitant chemo and radiotherapy treat-
ments. The Gompertzian growth rate g is replaced by

G(t, x) = g(x)−Kc(x)C(t)−Kr(x)R(t), (8)

where the term Kc(x)C(t) is associated with chemotherapy, C represents the drug’s concentra-
tion and Kc measures its efficiency. We adopt for Kc the expression introduced in [13]

Kc(x) = γ(x− x)H(x− x),

where H is the Heaviside function, x is a threshold from which drugs start and γ is a positive
constant that quantifies the drug’s effectiveness. Likewise, R represents cell death induced by
radiation, and

Kr(x) = γr(x− x̂)H(x− x̂),

indicates that radiotherapy is applied to tumors larger than x̂. The terms C, R, and the concomi-
tant timeline depend on the types of protocols.
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Chemotherapy. The term C(t) depends on the pharmacokinetics of administered drugs.
Here, we use a model with a central compartment and a peripheral one. Let V be the vol-
ume distribution, ke the elimination constant and dc the rate of drug’s infusion into the central
compartment. The drugs concentration is modeled by [10, 13]

{
ċ1(t) = −kec1(t) + k12(c2(t)− c1(t)) +

dc(t)

V
∀t ≥ t0, c1(t0) = 0,

ċ2(t) = k21(c1(t)− c2(t)) ∀t ≥ t0, c2(t0) = 0,
(9)

where t0 is the start time of treatment, c1, c2 represent respectively the evolution of drug’s con-
centration in the central and peripheral compartments, k12, k21 are exchange constants between
the two compartments and

dc =
∑n

i=1

dci−1

ti − ti−1

χ[ti−1,ti], (10)

dci is the dose given during the time [ti−1, ti]. For the following, we notice that the second
member of the differential system (9) is discontinuous.

Radiotherapy. Using a linear-quadratic model, the cell survival probability writes

survival probability = exp (−αeffdr) , (11)

where dr is a radiation dose, and αeff is a constant that translates radiations into cell death, said
relative effective radiosensitivity parameter [4, 7, 11, 12, 16, 17, 20, 21]. In general, fractions of
doses with the same magnitude are administered. We denote by Dr(t) the accumulated dose at
time t. By not considering any delayed or otherwise toxic effects, the probability of cells death
by radiation at time t writes

R(t) = 1− exp (−αeffDr(t)) .

Each radiation session lasts a few minutes, a finite series of pulses is then administered. We
assume that during these minutes, the irradiation takes place continuously and uniformly, so
that the accumulated dose writes

Dr(t) =
m∑
i=1

dr
2ε

χ[ti−ε,ti+ε](t),

where m, ε and ti are characteristics of each protocol. Therefore, R writes

R(t) = 1− exp

(
−αeff

dr
2ε

m∑
i=1

χ[ti−ε,ti+ε](t)

)
.

4



2.2 Final model

The model that we are studying, finally writes

∂

∂t
u(t, x) +

∂

∂x

[
G(t, x)u(t, x)

]
= 0, t ∈]t0, T [, x ∈]1, b[, (12)

(Gu)(t, 1) =

∫ b

1

β(x)u(t, x)dx+ f(t), t ∈]t0, T [, (13)

(Gu)(t, b) = 0, t ∈]t0, T [, (14)
u(t0, x) = u0(x), (15)

f(t) = β (xp(t)) , (16)
dxp

dt
(t) = G (t, xp(t)) , t > t0, xp(t0) = x0, (17)

where t0 and T are the start and end times of treatment, u0 is the density in size at t0 and G is
given by (8).

We notice that the non local boundary condition makes this problem non-classical. The exis-
tence of a solution was proven in [13] with G ∈ C2([t0, T ]× [1, b]). But taking the treatments
into account makes G discontinuous in time and space. In this work, we focus on the irregular-
ities in time : Kc(t, .) and Kr(t, .) will be approached with functions of class C2([1, b]) for all
t.

Hypothesis H.
We will assume, in a generic framework, that G is of class C2 in x for all t, has a finite number
of discontinuities denoted by ti, i = 1, ..., n, and is of class C2 on the connected components
of Q = [t0, T ] × [1, b] delimited by the curves Σi = {(ti, x), x ∈ [1, b]}, i = 1, ..., n. These
hypothesis will be called Hypothesis H.

2.3 The main theorem

We denote by E = C1
MG([t0, T ], L

1([1, b])) the set of continuous functions on [t0, T ] with values
in L1([1, b]), of class C1 on [t0, T ]\{ti, i = 1, ..., n} and admitting right and left derivatives in
time on each point. We take note that E is different from the set of class C1 piecewise in time
functions. The index G reminds that the set of derivative discontinuity points is fixed, finite,
and is associated with the set of time discontinuities of G. We provide E with its natural norm

∥w∥ = sup
t∈[t0,T ]

∥w(t, .)∥L1([1,b]) + max
i∈{0,...,n}

sup
t∈[ti,ti+1]

∥∥∥∥∂w∂t (t, .)
∥∥∥∥
L1([1,b])

.

We define, for u ∈ L1([1, b]), the set

E(u) =
{
w ∈ C1

MG([t0, T ], L
1([1, b])) w(t0, .) = u

}
.

It is obvious that (E, ∥.∥) is a Banach space and that the metric space E(u) is closed in E for
each u ∈ L1([1, b]).

Theorem 1: Ben Abdejlil, Ben Essid, and Mani-Aouadi [24]
We suppose that the initial data u0 belongs to W 1,1(]1, b[) and verifies the compatibility condi-
tions

u0(b) = 0 and (Gu0)(t0, 1) =

∫ b

1

β(x)u0(x)dx+ f(t0). (18)
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We suppose that G verifies Hypothesis H and the conditions

G(t, 1) > 0, ∀t ∈]t0, T ], (19)
G(t0, x) > 0, ∀x ∈ [1, b[, (20)
G(t, b) < 0, ∀t ∈ [t0, T ]. (21)

with G(t, 1) constant on [t0, T ].

Then, there is a unique u ∈ E(u0) with Gu ∈ C([t0, T ], W 1,1([1, b])) that verifies the equations
(12), (13) and (14) respectively in C([t0, T ], L1([1, b])), C([t0, T ], R) and L1([1, b]).
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