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Abstract
In this study, we present an epidemic controlled SIRD model of a totally vaccinated population
with two types of control strategies: mask wear and screening. The aim of this study is to minimize
the number of the Deceased keeping a minimal cost of mask advertising and screening. The model
is proved to be well posed and to have an invariant region . Also, a study of the equilibria stability
is effected using the basic reproduction number. As for the optimal control analysis, we study
the existence of an optimal solution in two different cases: constant and variable mask wear. The
characterization of the optimal control is carried out using Pontryagin’s minimum principle in both
cases. Numerical simulations are conducted for the constant mask wear case with different values
of maximal screening for comparison. The findings of the optimal control analysis and numerical
simulations both reveal that combining vaccination with the optimal pair of strategies contribute
enormously in lowering the number of infected and dead individuals. Although zero infection is
not achieved in the population, this study implies that carrying an optimal approach constitutes a
major step in controlling the spread of the disease to the barest minimum.
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I INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 commonly known as SARS-CoV-2 is a novel
coronavirus that has caused the global pandemic of COVID-19 first reported in Wuhan China.
The virus has proved to be very difficult to contain out of the quarantine measures due to its
high contagion and lethalness. On the other hand, the economic pressure on the governments
has shown how inconvenient the lockdown strategy is and how much required it is to carry on
with a normal way of life. The problem has been treated biologically in the first place trying
to develop vaccine and treatment. However, despite the implementation of several vaccines and
their use, many countries kept registering high numbers of deaths and infections. For that, the
problem was also regarded from a mathematical point of view. This is not a first as mathemat-
ical modeling has provided a very powerful tool for investigating the dynamics of infectious
diseases and controlling them. Previous studies have introduced different models allowing to
predict and assess intervention strategies during pandemic spread [7, 8] such as Ebola [9], Tu-
berculosis [4] or the current Covid-19 [11, 12]. In our case, we consider an SIRD model where
we introduce the disease-caused death equation into the model dynamics as our focus, in the

1

mailto:


second part of this study, is on minimising the number of these deaths. The study is effected
over an eight month period as it is the vaccine-induced immunity time interval. During that
time, the population is supposed to be completely vaccinated. Thus, the ultimate goal of this
study is to minimize the number of deaths among a vaccinated population with basic strate-
gies: mask wear and screening at a minimal cost. This presents the possibility of containing
the disease without any extreme measures such as lockdown. Modeling such a situation rep-
resents a very good opportunity as it gives a larger view of the situation offering the chance
of setting a good vaccination schedule that can lead to a total containment of the disease. In
this work, both mathematical and numerical analysis of a controlled epidemiological model of
four sub-populations: susceptible, infectious, recovered and dead are presented. Section 2 is a
study of the dynamics of the SIR model, its equilibria and their stability. Section 3 focuses on
the optimal control problem that aims to reduce the number of the deceased keeping a minimal
screening cost. Section 4 is dedicated to the numerical simulations and the discussion. Then, a
conclusion was drawn in the last section.

II MODEL DESCRIPTION AND ANALYSIS

This section outlines the formulation of a deterministic SIRD model for COVID-19. The total
population at time t is divided into four sub-populations: Susceptible, S(t) ; Infectious, I(t) ;
Recovered, R(t) and Dead, D(t). Two types of control u1(t) and u2(t) are used where 1−u1(t)
is the probability of mask wear and u2(t) is the screening rate. In the Susceptible compartment,
S(t), people are recruited into the population at a constant rate, Λ, through migration/birth.
They exit this compartment either through infection induced by the disease with the force of
infection, u1 β I(t) or natural mortality. The infectious compartment, I(t), gains population
through infection induced by the disease at the rate of u1(t) β S(t). A proportion, α, exits this
compartment through recovery at a rate u2(t) + δ after screening or end of incubation period,
the remaining proportion, 1 − α, of the infectious individuals leaves this compartment at a
rate u2(t) + δ towards the dead compartment through disease induced death, D(t). Recovered
individuals are assumed to develop immunity to COVID-19, and compartments, S , I and R
are assumed to have a natural mortality rate, µ. Therefore, the epidemic model is given by the
following system:

dS(t)
dt

= Λ− u1(t)βS(t)I(t)− µS(t)
dI(t)
dt

= u1(t)βS(t)I(t)− (u2(t) + µ+ δ)I(t)
dR(t)
dt

= α (u2(t) + δ) I(t)− µR(t)
dD(t)
dt

= (1− α) (u2(t) + δ) I(t)

(1)

subject to the following initial conditions

S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0

The whole population is assumed to be vaccinated and all parameters of the model are positive.

In what follows, we will study the dynamic of the sub-model, susceptible, infected and recov-
ered (SIR) model, in the case where controls are constants.

2.1 Analysis of the SIR model with constant controls

The SIR model corresponds to the first three equations of the system (1):
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
dS(t)
dt

= Λ− u1βS(t)I(t)− µS(t)
dI(t)
dt

= u1βS(t)I(t)− (u2 + µ+ δ)I(t)
dR(t)
dt

= α (u2 + δ) I(t)− µR(t)

(2)

We aim here to understand the impact of time independent control parameters, i.e., u1(t) = u1

and u2(t) = u2, on the transmission dynamics of the COVID-19.

By the following, we prove that the solutions are uniformly bounded in a positive invariant
region,

Ω = {(S, I, R) ∈ R3
+ : S + I +R ≤ Λ

µ
} (3)

Theorem 1:
For any non-negative initial condition, the solution of system (2) remains non-negative and
positively bounded. In addition, the set Ω is positively invariant for the epidemic model (2).

Existence and global stability of equilibrium points

In this section, the existence and the stability of both the disease-free and the endemic equilibria
of model (2) are examined.

First, we need to define the basic reproduction number, R0. This quantity predicts the spread of a
disease in the population. It is defined as the average number of secondary infections generated
when an infected person is introduced into a host population where everyone is susceptible and
it is given by :

R0 =
∂IF (S, I, R)

∂IV (S, I, R)
|(Λ

µ
,0,0) =

u1βΛ

µ (u2 + µ+ δ)
(4)

where F (S, I, R) = u1(t)βS(t)I(t) and V (S, I, R) = (u2(t) + µ+ δ)I(t) denote respectively
the rates of the transfer in and out of the infected compartment.

Then, It is easy to show that the system (2) has two steady states: a disease-free equilibrium
(DFE) given by E∗

0 = (Λ
µ
, 0, 0) that exists for any value of the parameters and an endemic

equilibrium E∗
1 = (S∗, I∗, R∗) in the interior of Ω that exists if and only if R0 > 1 and where,

S∗ =
Λ

µR0

, I∗ =
Λ

u2 + µ+ δ

[
1− 1

R0

]
, R∗ =

α(u2 + δ)(R0 − 1)

u1β
.

For the global stability of equilibrium we use popular types of Lyapunov functions i.e, the
common quadratic and Volterra-type functions.

Theorem 2:
If R0 ≤ 1, then the DFE, E∗

0 , is globally asymptotically stable on Ω. If R0 > 1, then the
endemic equilibrium, E∗

1 , is globally asymptotically stable.
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III OPTIMAL CONTROL

In this section, we aim to reduce the number of deceased individuals keeping a minimal cost of
screening.The cost of mask advertising campaign is treated in two cases: constant in the first
part and variable in the second. Note that the controls in this section are no longer considered
constant.

3.1 Constant mask wear cost

As aforementioned, the objective is to reduce the number of deceased individuals at a finite
time, D(tf ), with a minimal cost of screening

∫ tf

0
u2
2(t)dt.The constant cost of mask advertising

campaign has no effect on the objective function,and is assumed equal to zero. Therefore, the
objective function that we seek to minimize over a finite time horizon [0, tf ] is given by:

J(u1, u2) = A1D(tf ) + A2

∫ tf

0
u2
2(t)dt

=
∫ tf

0
A1 (1− α) (u2(t)+ δ)I(t) + A2u

2
2(t)dt

(5)

Where the set of admissible controls U is given by

U = {u = (u1, u2) ∈ (L∞(0; tf ))
2 | 0 ≤ umin

i ≤ ui(t) ≤ umax
i ≤ 1 , for i = 1, 2}

Theorem 3:
There exists an optimal control u∗ and a corresponding state variables vector (S0, I0, R0, D0)
that minimizes the objective function.

Theorem 4:
Given optimal controls u∗

1(t) , u∗
2(t) and the corresponding solution S0(t) , I0(t) , R0(t) and

D0(t) of the corresponding state system (1) - (5), there exists adjoint variables λ1 , λ2 , λ3 and
λ4 that satisfy

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)− A1(1− α)(u2 + δ)

λ̇3 = µλ3

λ̇4 = 0

(6)

with transversality conditions:

λi(tf ) = 0 , i = 1, 2, 3, 4. (7)

Furthermore, the optimal control is given by u∗ = (u∗
1, u

∗
2) where

u∗
1 =

{
umin
1 , if λ2 − λ1 > 0

umax
1 , if λ2 − λ1 < 0

u∗
2 =


(λ2−(1−α)A1)I

2A2
, if umin

2 < (λ2−(1−α)A1)I
2A2

< umax
2

umin
2 , if (λ2−(1−α)A1)I

2A2
< umin

2

umax
2 , if (λ2−(1−α)A1)I

2A2
> umax

2
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3.2 Variable mask cost

In this section we add the mask advertising campaign cost as a quadratic term −
∫ tf
0

A3u1(t) to
the previous objective function. The latter becomes:

J(u1, u2) =

∫ tf

0

A1 (1− α) (u2(t)+ δ)I(t) + A2u
2
2(t)− A3u

2
1(t) dt (8)

For the same set of admissible controls aforementioned, one has the following results:

Theorem 5:
There exists an optimal control u∗ and a corresponding state variables vector (S0, I0, R0, D0)

that minimizes the objective function (8) if and only if A3

A2
≤ (

u2 − v2
u1 − v1

) .

Theorem 6:
Given optimal controls u∗

1(t) , u∗
2(t) and the corresponding solution S0(t) , I0(t) , R0(t) and

D0(t) of the corresponding state system (1) - (8), there exists adjoint variables λ1 , λ2 , λ3 and
λ4 that satisfy

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)− A1(1− α)(u2 + δ)

λ̇3 = µλ3

λ̇4 = 0

(9)

with transversality conditions:

λi(tf ) = 0 , i = 1, 2, 3, 4. (10)

Furthermore, the optimal control is given by u∗ = (u∗
1, u

∗
2) where

u∗
1 =

{
umin
1 , if umin

1 < βSI(λ2−λ1)
2A3

< 1 and H(umin
1 ) < H(umax

1 )

umax
1 , if 0 < βSI(λ2−λ1)

2A3
< umax

1 and H(umin
1 ) > H(umax

1 )

u∗
2 =


(λ2−(1−α)A1)I

2A2
, if umin

2 < (λ2−(1−α)A1)I
2A2

< umax
2

umin
2 , if (λ2−(1−α)A1)I

2A2
< umin

2

umax
2 , if (λ2−(1−α)A1)I

2A2
> umax

2

IV NUMERICAL SIMULATIONS AND DISCUSSION

In this section, the system (1) is solved numerically for the constant mask wear case, and the
results obtained are presented below. The numerical simulations were carried out by imple-
menting a 4th order Runge-Kutta Method (see, for example [5]). This iterative method consists
in solving the system of equation (1). Details of the application of this method are developed in
[10]. The parameters used are presented in the table 1. To start, the system is solved using the
set of parameters listed above and the following initial conditions

[S(0) = 11718548; I(0) = 2629; R(0) = 0; D(0) = 0]
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Parameters Description Values References
α The rate at which infected individuals become cured ≈ 0.99 [14]
N(0) The total size of the population 11172177 [15]
β The disease transmission coefficient 0.24032955/N(0) Fitted
1/δ The mean duration of infection 5.073 days Fitted
µ The death rate 0.000017534 [15]
Λ The birth rate 510.5937 [15]
A1 The balancing factor associated to the cost component 30 Assumed
A2 The balancing factor associated to the cost component 10 Assumed
1− u1 Mask wear rate per unit of time 0.4 < u1 < 1 Assumed
u2 Screening rate per unit of time 0 < u2 < 0.2 Assumed

Table 1: Description and values of the parameters.

We introduced the control and solved the optimality system. With the use of these parameters,
and the adjoint variables dynamics, the following solutions for λ1 and λ2 were obtained. For
this set of parameters, λ2−λ1 is always positive (see figure 1). According to the optimal control
study conducted above, this results in

u∗
1 = umin

1 .

For that value of u1, one has maximal constant mask wear while the screening rate starting at
0.2 remains constant during the first 150 days then decreases to 0 (see figure 2).

Figure 1: Adjoint variables λ1 and λ2

Figure 2: Optimal mask wear rate 1− u∗1 (left) and screening rate u∗2 (right) per unit of time

Then, the state variables were plotted in two cases: controlled and uncontrolled. In the absence
of any form of control, the susceptible curve starts decreasing almost from the start until it
reaches a value near zero. On the other hand, the curve of the infected reaches a peak that ex-
ceeds 2. 105 and the number of deaths reaches 4. 104. However, once the system is controlled, a
huge difference in the dynamics is observed. The susceptible number is increasing starting from
day 100 as opposed to the the infections that start at a maximal value of 3. 104 then decrease to
0. The dead curve is still increasing; however, to a maximal value less than 450 ( see figure 3).

The coefficients, A1 and A2, are balancing cost factors. We assume that A1 associated with the
number of deaths D(tf ) is greater than or equal to A2, associated with the screening u2. The
fractions of the weighing factors, A1/A2 = 1, 3, 10 and 100, are presented in Figure (4). And
to illustrate the optimal strategy we have chosen the weighing factor, A1/A2 = 3 since the only
change observed was in the values of the controls rather than the dynamics.

In order to present the importance of maximal mask wear and screening values, the state vari-
ables were represented for two values of maximal screening umax

2 ∈ {0.2; 0.5} and four differ-
ent values of mask wear 0.2, 0.4, 0.6, 0.9 (See figure 5). In both cases, the same behaviour is
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Figure 3: Dynamics of state variables per unit of time in two cases: without any control measures
1− u1 = u2 = 0 (a) and with optimal control pair (u∗1, u

∗
2) (b)

Figure 4: The screening rate u∗2 per unit of time

Figure 5: Simulation of SIRD model for two values of maximal screening umax
2 ∈ {0.2, 0.5} and four

different values of mask wear 1− umin
1 ∈ {0.2, 0.4, 0.6, 0.9}

observed: infections decrease, both the susceptible and recovered increase and and deaths had
a threshold. However, a difference of the pace is noticed as infections decrease much faster for
high screening values and deaths maximal value is lower: less than 450 with high screening as
opposed to over 600 for low screening.

A ANNEX 1
Proof. The existence of the optimal control pair can be obtained using a result from [5, 8].
In fact, one can easily verify that:
1. The set of controls and corresponding state variables is nonempty.
2. The admissible set U is convex and closed.
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3. The right hand side of the state system 1 is bounded by a linear function in the state and control variables.
4. The integrand of the objective functional L is convex on U and there exists constants ω1 > 0, ω2 > 0 and ρ > 1
such that

L(u) ≥ ω2 + ω1(|u1|2 + |u2|2)
ρ
2 .

Proof. In order to determine the optimal control, Pontryagin’s Minimum Principle was used [5]. The latter changes
the optimality system into a study of the Hamiltonian variations through the use of adjoint functions . The Hamil-
tonian is given by

H(t, u,X, λ) =< λ(t), Ẋ(t) > +A1 (1− α) (u2(t) + δ) I(t) +A2u
2
2(t)

where X = (S, I,R,D) is the vector of state variables and λ = (λ1(t), λ2(t), λ3(t), λ4(t)) is the vector of adjoint
variables and < ., . > is the scalar product. According to Pontryagin’s minimum principle, the adjoint functions
(λ1(t), λ2(t), λ3(t), λ4(t)) have the following dynamics

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)− λ3α(u2 + δ)− (1− α)(u2 + δ)λ4 −A1(1− α)(u2 + δ)

λ̇3 = µλ3

λ̇4 = 0

with the final conditions
λ(tf ) = (0, 0, 0, 0).

From the third and fourth equations we can deduce that λ3 ≡ 0 and λ4 ≡ 0.
Consequently, the Hamiltonian becomes

H = (Λ− u1(t)βS(t)I(t)− µS(t))λ1 + (u1(t)βS(t)I(t)− (u2(t) + µ+ δ)I(t))λ2

+A1 (1 α) (u2(t)+ δ)I(t) +A2u
2
2(t).

(11)

and the adjoint variables dynamics is reduced to

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)−A1(1− α)(u2 + δ)

Also, the Pontryagin’s Minimum Principle states that the optimal control u∗ minimizes the Hamiltonian, hence we
should seek the minimum of H . So we need to study the critical points of the Hamiltonian.{ ∂H

∂u1
= βSI(λ2 − λ1)

∂H
∂u2

= (−λ2 + (1− α)A1) I + 2A2u2

The equation ∂H
∂u2

= 0 implies that

u∗
2 =

(λ2 − (1− α)A1) I

2A2

whereas the first equation shows that the minimum is either reached at u∗
1 = umin

1 or u∗
1 = umax

1 according to the
sign of λ2 − λ1.

In fact when u1 is supposed constant; H would depend on u2 only and therefore u∗
2 is a minimum to H since

A2 > 0. In that case, one has
H(u1, u2) > H(u1, u

∗
2)

Since umin
1 ≤ u1 ≤ umax

1 then two scenarios are possible
• If βSI(λ2 − λ1) > 0 i.e. λ2 − λ1 > 0 then

(λ2 − λ1)u
min
1 ≤ (λ2 − λ1)u1 ≤ (λ2 − λ1)u

max
1

and consequently,
H(u1, u2) ≥ H(u1, u

∗
2) ≥ H(umin

1 , u∗
2)
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• If βSI(λ2 − λ1) < 0 i.e. λ2 − λ1 < 0 then

(λ2 − λ1)u
min
1 ≥ (λ2 − λ1)u1 ≥ (λ2 − λ1)u

max
1

and consequently,
H(u1, u2) ≥ H(u1, u

∗
2) ≥ H(umax

1 , u∗
2)

Note that u∗
2 must satisfy umin

2 < u∗
2 < umax

2 to be taken into consideration. Otherwise,
• min

u2∈[umin
2 ,umax

2 ]
H = H(umin

2 ) if ∂H
∂u2

> 0 i.e. (−λ2 + (1− α)A1) I + 2A2u2 > 0

• min
u2∈[umin

2 ,umax
2 ]

H = H(umax
2 ) if ∂H

∂u2
< 0 i.e. (−λ2 + (1− α)A1) I + 2A2u2 < 0.

Assume now that there exists a subset [t0, t1] ∈ [0, tf ] such that ∂H
∂u = 0 for all t ∈ [t0, t1]. This implies that{

βSI(λ2 − λ1) = 0
(−λ2 + (1− α)A1) I + 2A2u2 = 0

And consequently  βSI(λ2 − λ1) = 0
(−λ2 + (1− α)A1) I = 0
A2 = 0

Since A2 > 0, we deduce that it is not possible to have ∂H
∂u2

= 0 and therefore we cannot discuss the case of
singular control in the usual terms. However, it is possible to have ∂H

∂u1
= 0 which implies that βSI(λ2−λ1) = 0.

Consequently, either S.I = 0 or λ2 − λ1 = 0. As the first case does not present quite an interesting case of study,
we move to the latter that yields

λ1 = λ2

⇒ λ̇1 = λ̇2

⇒ (u2 + δ)(λ1 −A1(1− α)) = 0

Thus, either u2 = −δ which is not taken into account since −δ /∈ [0;u∗
2] or λ1 = A1(1− α) = λ2. However, ac-

cording to the co-state variables dynamics, one has λ̇1 = µλ1 which implies that λ1(t) = λ1(t0)e
µ(t−t0).Consequently,

λ1(t0)e
µ(t−t0) = A1(1 − α) , ∀t ∈ [t0, t1]. This equality is absurd except for one particular case α = 1 and

λ1(t0) = 0. Therefore, the existence of an interval [t0; t1] such that ∂H
∂u = 0 ∀t ∈ [t0; t1] is not possible.

Proof. The two first conditions for the existence of optimal control are checked in the first case and remain un-
changed.
Now , let f(u) = A1 (1− α) (u2+ δ)I +A2u

2
2 −A3u

2
1 and u, v ∈ U

f(u)− f(v) = (u1 − v1)f
′
u1

+ (u2 − v2)f
′
u2

−A2(u2 − v2)
2 +A3(u1 − v1)

2

f(u)− f(v) ≤ (u1 − v1)f
′
u1

+ (u2 − v2)f
′
u2

⇐⇒ A3

A2
≤ (

u2 − v2
u1 − v1

)2

Moreover, one has
f(u) ≥ ω1(|u1|2 + |u2|2)

2
2 + ω2

where ω1 = A2 and ω2 < A1(1− α)(u2 + δ)− (A3 +A2)u
2
1

Proof. Using Pontryagin’s minimum principle, one has the following dynamics for the adjoint functions (λ1(t), λ2(t), λ3(t), λ4(t))

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)− λ3α(u2 + δ)− (1− α)(u2 + δ)λ4 −A1(1− α)(u2 + δ)

λ̇3 = µλ3

λ̇4 = 0

with the final conditions
λ(tf ) = (0, 0, 0, 0).
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Similarly to the first case, one can deduce from the third and fourth equations that λ3(t) = 0 and λ4(t) = 0.
Consequently, the Hamiltonian becomes

H = (Λ− u1(t)βS(t)I(t)− µS(t))λ1 + (u1(t)βS(t)I(t)− (u2(t) + µ+ δ)I(t))λ2

+A1 (1 α) (u2(t)+ δ)I(t) +A2u
2
2(t).

(12)

and the adjoint variables dynamics is reduced to

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)−A1(1− α)(u2 + δ)

λ̇3 = µλ3

λ̇4 = 0

Also, the Pontryagin’s Minimum Principle states that the optimal control u∗ minimizes the Hamiltonian, hence we
should seek the minimum of H . So we need to study the critical points of the Hamiltonian. A critical point of H ,
u∗ = (u∗

1, u
∗
2) satisfies dH

du = 0 where{ ∂H
∂u1

= βSI(λ2 − λ1)− 2A3u1
∂H
∂u2

= (−λ2 + (1− α)A1) I + 2A2u2

The equation ∂H
∂u2

= 0 implies that

u∗
2 =

(λ2 − (1− α)A1) I

2A2

The first equation, shows that the critical value is ucrit
1 = βSI(λ2−λ1)

2A3
. However, it is easy to verify that this value

is a maximum to the parabola H(u2). In fact, one has three possible cases
• If ucrit

1 ∈ [umin
1 ;umax

1 ], then the minimum is umin
1 if H(umin

1 ) < H(umax
1 ) and umax

1 otherwise.
• If ucrit

1 > umax
1 , then the minimum is reached at umin

1 .
• If ucrit

1 < umin
1 , then the minimum is reached at umax

1 .

B ANNEX 2

Parameter estimation
The root mean square error (RMSE) [6] is a frequently used method to measure the difference between the values
predicted by a model and the values observed in reality. Let Xobs be the vector of the observed values and Xmodel

the vector of modeled ones. The RMSE of a prediction model with respect to the estimated variable Xmodel is
defined as follows

RMSE =

√√√√ 1

n

n∑
j=1

(Xmodel,j −Xobs,j)
2

Hence, to obtain optimal parameters {β, δ} for our model, one should solve the following problem :

min RMSE

Here, the fit is measured by computing the value of the RMSE function using data of deaths for the beginning of
the second wave in Tunisia which is calibrated from June 2021, provided by 1 as Xobs data. Xmodel is the death
data obtained by the SIRD model (1) subject to the following initial condition

S(0) = 1686692, I(0) = 34485, R(0) = 0, D(0) = 0

In addition, to minimize the RMSE function, we used the genetic method 2 to update the parameters β and δ.
Figure 6 shows the result of the fitted values using the optimal parameters β and δ.

1https://covid19.who.int/WHO-COVID-19-global-data.csv
2https://github.com/rmsolgi/geneticalgorithm
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Figure 6: The fitted value using the optimal parameters β = 1.3201448967113115e − 08 and δ =
0.098575

C CONCLUSION
In this work, a study of COVID-19 transmission for the case of Tunisia was carried out. A four compartmental
mathematical model of a vaccinated population with mask wear and screening as time-dependent control measures
is developed. The model is proven to have an invariant region where it is well-posed and makes biological sense
to be studied for human population. Different properties of the model including global stability analysis of the
equilibria have been studied. Some of the parameter estimates were taken from literature and the remaining pa-
rameters were estimated based on real daily data of COVID-19 confirmed cases of Tunisia. An optimal analysis
of the model for the purpose of assessing the effect of mask wear by the individuals and screening companions
was conducted. The results showed that the optimal practice of combination of these two strategies in a vaccinated
population significantly reduces the number of infections and deaths. And for quicker results it is required to set
higher maximal values of screening and mask wear (see figure 5 ).
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